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INTRODUCTION 
Mammography is currently the most effective early-detection tool for breast cancer 

screening. To provide a reliable and efficient second-reader to aid breast-imaging radiologists, 
recent research has been directed towards developing computer-aided detection (CAD) tools for 
mammography. Although these tools have shown promise in identifying calcifications, detecting 
masses has proven relatively more difficult primarily due to presence of dense overlying tissue 
in a mammogram. Breast tomosynthesis has the potential to improve detection and 
characterization of breast masses by removing overlapping dense fibroglandular tissue. These 
systems provide 3D slice images from a modified full field digital mammography system which 
acquires a limited-angle cone beam CT scan under mammography positioning.  
 

The goal of tomosynthesis to provide 3D information at comparable dose, resolution, and 
patient throughput to mammography, and with lower cost and hardware requirements compared 
to alternatives such as breast Computed Tomography or breast Magnetic Resonance Imaging. 
However, with tomosynthesis, instead of the traditional 4 mammography views per case, the 
radiologist must interpret a large volume of data per breast volume. Given this constraint, the 
role of CAD is especially important in breast tomosynthesis. If this modality is ever intended to 
replace mammography as a screening tool, then a CAD algorithm that presents the radiologist 
with initial cues could potentially become indispensable to maintain current clinical workflow. In 
fact, investigators in CT colonography have already begun to show that CAD can potentially 
ease radiologist workflow with large 3D datasets.  
 

As part of our investigation for this grant, we have built a highly sensitive and highly 
specific CAD scheme for tomosynthesis, incorporating unique preprocessing techniques and 
advanced decision theory methods. This CAD scheme is expected to detect masses and 
improve the performance of radiologists attempting to sift through ~50- 80 reconstructed slices 
of a single breast view. Regardless of whether we choose to work with projection images initially 
or entirely in the reconstructed domain, the proposed CAD system has two key components: 1) 
a highly sensitive mass detector, and 2) statistical models designed to reduce false-positives. 
 
BODY 
Task 1. Translate single-slice CAD algorithms to individual, reconstructed tomosynthesis 
slice images: 
 
1.1. Generate independent training and testing subsets of 160 and 40 cases, respectively, from 
the available 200 patient cases of biopsy-proven masses 

Data was collected from the mentor Dr. Lo’s other funded grants. We have a shortfall in 
terms of total number of biopsy proven cases that were collected by the end of this grant. The 
pace of subject accrual had been steady since February 2006 after software/ hardware 
upgrades and the hiring of a clinical coordinator. However, we have found that despite these 
efforts, our accrual rate has reached an upper limit resulting from unforeseen practical 
difficulties of running a human subject trial.  

 
Currently, Duke has acquired tomosynthesis data from a total of 241 subjects. Of these, 

a total of 230 cases have been read by trained radiologists, and 38 subject scans were found to 
have true lesions in them.  
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Our experiences with the aims of this goal have led to an abstract being accepted and 
presented in RSNA 2006 titled “Breast Tomosynthesis: Initial Clinical Experience with 100 
Human Subjects,” (reportable outcomes #12) 
 
 
1.2. Apply 2D mammography CAD technique of Hotelling Observer on tomosynthesis slices 
1.2.1. Establish baseline performance of existing computer aided detection algorithms on 
tomosynthesis slices from 160 patient cases 
 Work on this task began after the work for task 2.2, the results of which steered research 
for this specific aim towards featureless false-positive reduction techniques used previously in 
2D mammography to be applied to tomosynthesis. Baseline performance was thus established 
using human subject data from 80 cases and was evaluated using only the projection images. In 
the false positive reduction stage of the algorithm various metrics were implemented and the 
results were reported as Receiver Operating Characteristic (ROC) Area Under Curve (AUC) by 
applying a leave-one-out cross validation scheme on all available ROIs. Our best performing 
metric was the joint entropy with a classifier AUC of 0.87.  
 

Work for this specific task resulted in a proceedings paper at SPIE, the primary scientific 
conference for medical imaging in 2007 (reportable outcome #10). Techniques from this work 
were also instrumental in the submission of another paper in SPIE with our industrial 
collaborators, Seimens Medical Systems (reportable outcome #11), and other Duke 
collaborators (reportable outcomes #7, 8 and 9) in 2007 and 2008. 
 
 
Task 2. Extend CAD algorithms for mass detection interrogating a 3D tomosynthesis 
volume by studying 3D, multi-slice CAD algorithms for lesion detection and 
characterization: 
 
2.1. Apply 2D CAD to projection images prior to 3D tomosynthesis reconstruction  
 Work for this task was reported as completed in last years report. The CAD algorithm 
implemented in this study can be divided into two major stages - the high-sensitivity, low-
specificity stage and the false positive reduction stage. Task 2.1 implemented the high-
sensitivity, low-specificity stage that can be further divided into two stages - the initial candidate 
generation and region of interest (ROI) extraction stages. Initial candidate generation has been 
implemented in this study via filtering of the projection images using an optimized Difference of 
Gaussians (DoG) filter. This filtered image undergoes multi-level thresholding to yield initial CAD 
suspicious locations in the 2-D projection images. Please see figure 1 for a diagrammatic 
representation. In the report for year 1, we have already displayed reconstructed images using 
filtered back projection.   
 

Techniques from this specific task resulted in a peer-reviewed paper at Academic 
Radiology in 2008 (reportable outcome #3). 
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Figure 1: (a) Original middle-projection image of subject 33, LCC view (b) DoG filtered image of 
image ‘a’ (c) CAD 2D suspicious location in red overlaid on the DoG filtered image of part ‘b’ 
 
 
2.2.  Implement a Laguerre-Gauss Channelized Hotelling Observer (LG-CHO) for 3D mass 
detection 

Work on this task began ahead of schedule during the first year because we anticipated 
that those results might affect our approach for this task. As detailed in the first year’s annual 
report, the Watson filter model significantly outperformed the LG-CHO filters for the task of 
detection of masses. This finding led us to believe that there were better models for our data 
than the proposed LG-CHOs. We found that reconstructed tomosynthesis slices from task 2.1 
have very little intensity variation across a mass ROI, and hence we anticipated difficulties in the 
segmentation and feature measurement of these ROIs in the reconstructed domain. As such we 
chose to use a featureless approach to false positive reduction for this task and decided to work 
with Information Theoretic CAD (IT-CAD) instead of LG-CHOs to assess image similarity for this 
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task. IT-CAD based similarity assessment relies completely on the statistical properties of the 
image histograms eliminating the image preprocessing, segmentation, and feature extraction 
steps. Furthermore, information theoretic similarity measures have the advantage of making no 
assumptions on the underlying image distributions. This is especially crucial for us given the 
small number of true lesions in our dataset.  
 

To complete this task, we extended our IT-CAD algorithm to work with ROIs extracted 
from reconstructed slices instead of projection images. The CAD scheme is comprised of two 
distinct stages – the ‘high-sensitivity, low specificity’ stage wherein ROIs are extracted followed 
by the ‘high-sensitivity, high-specificity’ stage that uses information theory principles to reduce 
false positives. Flowcharts of the 2 stages of the algorithm are shown in figures 2 and 3. 
 

 
Figure 2: Stage 1 – the filtration and ROI extraction or the ‘high-sensitivity, low specificity’ stage 
of the CAD algorithm 
 
 

Once the algorithm had identified initial candidates for mass detection by giving the X, Y 
and Z location of the centroid of the volume of interest, regions of interests (ROIs) were 
extracted from the reconstructed breast slice images obtained by filtered backprojection (FBP) 
which yielded 1 mm thick slices with 85x85 micron pixel pitch. The FP reduction scheme 
therefore was based upon the same reconstructed image data as used by radiologists. Two sets 
of ROIs were extracted to assess the effect of information from one versus many slices. In the 
first set, 256x256 pixel ROIs (22 x 22 mm) centered at the central slice containing the 
suspicious CAD location were extracted. For the second set, 256x256 ROIs representing the 
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summed slab of 5 slices (5 mm) were extracted. Since lesions typically span multiple 
reconstructed slices, these two sets investigated whether giving more ‘signal’ to the false 
positive reduction scheme resulted in an improvement in performance. Use of a slab would also 
reduce the impact of slight errors of localization in the Z direction.  
 

 
Figure 3: Composition of Knowledge Base of false positive reduction stage of the CAD 
algorithm (a) scheme ‘A’ KB composition (b) schemes ‘A’ and ‘B’ composition 
 

Traditionally CAD schemes measure, among others, morphological and texture features 
of a suspicious location for subsequent false positive reduction using trainable classifiers. This 
study used mutual information as a similarity metric for false positive reduction that relies 
completely on the statistical properties of the image histograms and the relationship between 
pixels of an image. Three schemes were therefore developed for the second stage of the 
algorithm, as shown in Figure 3. In scheme A, FP reduction was done using a KB containing 
ROIs from the CAD algorithm’s first stage. These ROIs were either mass ROIs or FPs. In 
scheme B, the KB contained only mass ROIs and randomly selected normal ROIs from well-
separated depths in all the normal cases’ reconstructed volumes. A total of 1390 such normal 
ROIs were extracted for this study. To access performance of the scheme A classifier, a leave-
one-case-out validation scheme was used. Thus, for every ROI that was presented to the 
system as a query ROI of unknown pathology, all other ROIs generated from that specific 
subject’s reconstructed volumes were excluded from the KB. For scheme B, all the FPs of the 
first stage of the algorithm served as queries to the system to assess its specificity. Sensitivity 
for scheme B was evaluated using a leave-one-case-out sampling scheme on all available ROIs 
that contained a mass. Thus the system has no knowledge of FP ROIs in its KB and hence the 
performance is not dependent on the nature of FP lesions generated by the first stage of the 
algorithm. Finally, scheme C included information from all three sources, (1) masses (2) CAD 
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generated FPs (3) normal breast tissue, combined into a single KB. Analysis was done in a 
leave-one-case-out manner for this KB as well. 
 

Table 1 presents overall classifier performance for all schemes. As implemented, 
summing adjacent slices did not improve the classifier performance in a statistically significant 
way compared to using only the single, central slice ROI for any of the schemes evaluated, 
either for AUC or partial AUC. Shown in Figure 4 are the ROCs and partial ROCs of just the 
central slice classifiers of all schemes.  
 
 
Table 1: Classifier performance for a KB containing mass and FP ROIs (scheme A), mass and 
normal ROIs (scheme B) and when the KB contains ROIs from all 3 sources – mass, FP and 
normal ROIs (scheme C). The AUC and pAUC for both the central slice and the sum of adjacent 
slices and their corresponding p-values for all schemes is shown.  

Central Slice only Sum of Adjacent slices p-value Scheme 
AUC pAUC AUC pAUC AUC pAUC 

A 0.88 +/- 0.02 0.49 +/- 0.09 0.89 +/- 0.03 0.46 +/- 0.10 0.3 0.2 
B 0.86 +/- 0.03 0.41 +/- 0.09 0.89 +/- 0.03 0.36 +/- 0.10 0.5 0.2 
C 0.87 +/- 0.02 0.45 +/- 0.09 0.88 +/- 0.03 0.41 +/- 0.10 0.43 0.19 

 

 
Figure 4: (a) Non-parametric ROC curves of the central slice classifier for schemes A, B, and C 
(b) Partial ROC curves for sensitivity greater than 0.9 for the three schemes 

 
Sensitivity when plotted as a function of the average FP rate while the decision threshold 

is varied results in the Free-Response Receiver Operating Characteristic (FROC) curve. Figure 
5 shows the system FROCs prior to FP reduction as well as after FP reduction for schemes A, B 
and C. These were obtained by varying the decision threshold over classifier outputs of the 
central slice classifiers of the three schemes starting with a threshold set at 91.5% sensitivity. 
For each scheme, the threshold was then progressively dropped to obtain the entire curve. 
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Scheme A outperformed others in terms of FPs per breast volume at equivalent sensitivity. At 
an operating point of 91.5%, scheme A was successfully able to discard 69% of the FPs per 
breast volume, scheme B correctly eliminated 53% of the FPs per breast volume, and lastly, 
scheme C was able to correctly discard 62% of the FPs per breast volume. The final 
performances were a sensitivity of 85% at 2.4 FPs per breast volume, 3.6 FPs per breast 
volume, and 3 FPs per breast volume for schemes A, B and C respectively. The Jackknife Free-
Response Receiver Operating Characteristic (JAFROC) was used to evaluate these FROC 
curves. None of the differences between the FROC curves of the three schemes studied were 
statistically significant.  

 
Figure 5: System FROCs. Prior to FP reduction, the system performance was at 93% sensitivity 
with 7.7 FPs per breast volume. Final system performances for the three schemes are depicted 
for the central slice classifiers. 
 

A human subject example from subject 122 is shown in Figure 6. While this subject had 
5 FPs in total only 2 reconstructed slices containing 1 TP and 2 FPs are shown for illustration 
purposes. These results were obtained when the CAD algorithm with a scheme A central slice 
classifier is used while operating at 91.5% sensitivity. After FP reduction, the FP in slice 40 was 
eliminated, however one FP along with the TP survived in slice 36. This subject had biopsy 
confirmed cancer. 
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Figure 6: (a) Slice 41 prior to FP reduction (b) Slice 41 after FP reduction (c) Slice 21 prior to 
FP reduction (d) Slice 21 after FP reduction 
Subject 122 had biopsy confirmed carcinoma. While this subject had 6 FPs in total from stage 1 
of the CAD algorithm, only reconstructed slices 41 and 21 are shown in this figure for illustration. 
After setting the threshold for scheme A central slice classifier to operate at 91.5% sensitivity, 
we are able to eliminate the FP in slice 21. However, the FP in slice 41 survives along with the 
TP. 
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A peer-reviewed paper in Medical Physics, a highly respected journal among Medical 
Physicists, has been accepted based on the results of this task and is currently in press 
(reportable outcome #1). Work for this specific task also resulted in a proceedings paper at 
SPIE, the primary scientific conference for medical imaging in 2008 (reportable outcome #6) and 
in IWDM in 2008 (reportable outcome # 2). Techniques from this work were also instrumental in 
the submission of 2 other peer-reviewed papers in Medical Physics (reportable outcomes #4 
and 5) in conjunction with Duke collaborators in 2007. 
 
 
Task 3. Evaluate performance of CAD model on independent testing subset of cases 
(Months 34-36)  

Given the small number of cases collected it was not possible to eke out a separate 
testing set for our algorithm as of the total of 240 human subject data only 38 had lesions in 
them. However, we evaluated performance of our algorithm using a leave-one-case-out cross 
validation for all the previously reported tasks.  
 

We also evaluated the performance of the CAD model by evaluating the composition of 
the knowledge base of our information theory based system. The first stage of the algorithm 
generates ROIs that are either mass lesions or FPs. Of note here is the imbalance in the 
number of lesion ROIs when compared to the total number of FPs generated by the first stage. 
Given this imbalance, it is imperative to explore the effect of knowledge about normal breast 
parenchyma represented by those FPs. This was studied in two ways. First, an increasing 
number of FPs was sampled from all FPs available while holding the number of true positives 
constant, thus decreasing the ratio of mass ROIs in the KB and progressively giving the system 
more indirect ‘knowledge’ of normal breast parenchyma. The second approach is to provide the 
system with direct information about normal breast parenchyma via randomly selected normal 
ROIs instead of suspicious FP regions generated by a CAD algorithm. Since these ROIs were 
extracted from random locations from within the breast volume there is a potential for some 
overlap with FPs generated by the first stage of the algorithm. Varying the number of mass ROIs 
in the knowledge base can also change composition of the knowledge base. However, given 
that our database consists of a limited number of mass ROIs, its effect was not studied in this 
experiment. 
 
Scheme A - effect of FP ROIs in the KB 

Scheme A seeks to differentiate between a mass and a FP query. A plot of the ROC 
AUC as a function of increasing number of FPs is presented in Figure 7, where the x-axis shows 
number of FPs as multiples of the total number of mass ROIs while using the scheme A 
classifier. The error bars are obtained by simple random sampling from all the available FPs of 
the first stage. 20 subsets of the FP ROIs were generated for each data point on the graph. 
Each subset was selected without replacement after randomization between subsets. When the 
sum of adjacent slices were used, as the number of FPs was increased the performance 
increased. When there were twenty times as many FPs as mass ROIs, the system reached a 
sensitivity of 89%. Adding more FP ROIs no longer improved the performance. A similar trend 
was observed while using only the central slice of the VOI with a maximum sensitivity of 88%. 
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Addition of more FP ROIs after a ratio of 25 times that of the masses again does not improve 
performance. 
 

 
Figure 7: The figure of merit, ROC AUC is plotted as a function of increasing number of FP 
ROIs in the system.  
 
Scheme B - effect of normal ROIs in the KB 

Scheme B assessed the behavior of the system with the presence of normal ROIs in the 
KB. Figure 8 depicts this trend as a function of increasing number of normal ROIs in the system. 
As previously described in section, the error bars are obtained when the same data point of the 
graph is evaluated using 20 different subsets of the normal ROIs available. AUC increased as 
more normal ROIs were added to the KB and levels off at a ratio of 25 times as many normals 
as masses for sum of adjacent slices. The same leveling off in performance for central slice was 
seen with 30 times as many normals as mass ROIs. Performance was comparable to that of 
scheme A. Scheme B attained a maximum classifier AUC of 86% for central slice ROIs and 
89% for sum of slices ROIs. As with scheme A, use of the slab ROIs did not affect performance 
substantially, although here in scheme B it had a more noticeable increase in performance than 
for scheme A.  

 
Figure 8: The figure of merit, ROC AUC is plotted as a function of increasing number of normal 
ROIs in the system. 
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As the amount of data available increases, an understanding of what constitutes an 

optimal KB in terms of the optimal number of FPs and/or normals will become pivotal for all 
practical applications. This is because similarity metrics need to be calculated for each query 
presented to the system with every ROI in the database. If there is nothing to be gained in terms 
of performance, then having more ROIs in the database simply adds to time needed for the 
system to generate CAD marks on a new case. To better understand the composition of such 
an optimal KB for tomosynthesis data, three FP reduction schemes were compared, each based 
on ROIs from only a single central slice versus a summed slab of slices from the first stage of 
the algorithm. While doing so, several trends were observed. There was no statistically 
significant difference in classifier performance when comparing the use of a single, central slice 
only versus the sum of adjacent slices, regardless of whether the AUC or partial AUC was the 
figure of merit. Scheme B’s performance was almost the same as that of A and C, even though 
B doesn’t use FPs in its KB. The performance of scheme B was independent of the nature of 
FPs generated by the first stage of the algorithm. JAFROC analyses of the system 
performances for the three schemes also indicate that there is no statistically significant 
difference between scheme B when compared against scheme A and C. Thus the results 
obtained for scheme B may be more robust when given either different cases or another set of 
unknown ROIs from these same cases that contain false positives generated by a different filter 
or algorithm. The performance of scheme C was between that of A and B as it added the use of 
FPs in its KB. 
 

The study of the optimal balance between positive and negative cases in the KB also 
yielded several interesting trends. For scheme A, the system reached its maximum performance 
with a FP ratio of twenty times that of mass ROIs in its KB. A similar trend was observed in 
scheme B when the KB contained information about only masses and normal breast tissue 
where nearly thirty times as many normal ROIs were needed in the KB as mass ROIs. Thus it 
appeared that scheme B required more examples of randomly extracted normal ROIs compared 
to scheme A which used more suspicious normal anatomy presented in FP ROIs. Regardless of 
the nature of the negative, non-mass cases, both systems showed that when given increasingly 
larger number of non-mass ROIs in its KB, their performance increased toward an asymptote. 
Furthermore, we found that more non-mass ROIs than mass ROIs were needed in order for the 
algorithm to learn the naturally greater variability of normal breast anatomy. Both schemes 
displayed larger standard deviations in performance levels initially with tighter confidence levels 
attained as the schemes were given increasing information about the diversity of normal breast 
tissue. 
 
KEY RESEARCH ACCOMPLISHMENTS 

• Collected over 240 human subject data using the tomosynthesis technique.  
• Optimized and applied the high sensitivity, low specificity stage of 2D CAD to projection 

images of the tomosynthesis data and used information theoretic similarity metrics to 
reduce false positives. 

• Built a tomosynthesis CAD algorithm that reduces false positives in the reconstructed 
domain and achieves a maximal classifier sensitivity of AUC 0.89. 

• Published 12 papers in peer-reviewed journals and editor-reviewed conferences. 
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CONCLUSIONS 

A CADe system for breast tomosynthesis was developed which attained promising 
results over a dataset of one hundred human subjects consisting of twenty-five mass cases. A 
Difference of Gaussian (DoG) filter was used in the projection domain to identify initial 
suspicious locations. We then reconstructed these suspicious locations identified by CADe in 
the projection domain using a shift and add reconstruction method to get results in the 3D 
reconstructed domain. Centroids of the volume of interests were identified and used to extract 
ROIs that were subjected to a false positive reduction stage utilizing information theory 
principles.  
 

The best overall system performance was achieved while using a knowledge base 
consisting of mass and false positive ROIs. Adding normal ROIs in addition to or in place of the 
false positives resulted in the same sensitivity but slightly worse specificity, but may represent 
more generalizable results as doing so decreased the dependence on specifics of this detection 
algorithm. In conclusion, this CAD system was based on a human subject data set and used an 
innovative false positive reduction scheme of feature-less information theory based similarity 
metrics, and demonstrated promising results for mass lesion detection. 
 
REFERENCES 
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APPENDICES 
The peer-reviewed paper from Medical Physics currently in press (reportable outcome #1) and 
IWDM conference proceeding (reportable outcome #2) are attached as appendices to this 
report. 
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ABSTRACT 

  The purpose of this study was to propose and implement a computer 

aided detection (CADe) tool for breast tomosynthesis. This task was 

accomplished in two stages – a highly sensitive mass detector followed by a 

false positive (FP) reduction stage. Breast tomosynthesis data from 100 human 

subject cases were used; of which 25 subjects had one or more mass lesions 

and the rest were normal. For stage 1, filter parameters were optimized via a grid 

search. The CADe identified suspicious locations were reconstructed to yield 3D 

CADe volumes of interest. The first stage yielded a maximum sensitivity of 93% 

with 7.7 FPs/ breast volume. Unlike traditional CADe algorithms in which the 

second stage FP reduction is done via feature extraction and analysis, instead 

information theory principles were used with mutual information as a similarity 

metric. Three schemes were proposed, all using leave-one-case-out cross 

validation sampling. The three schemes, A, B and C, differed in the composition 

of their knowledge base of regions of interest (ROIs). Scheme A’s knowledge 

base was comprised of all the mass and FP ROIs generated by the first stage of 

the algorithm. Scheme B had a knowledge base that contained information from 

mass ROIs and randomly extracted normal ROIs. Scheme C had information 

from three sources of information – masses, FPs and normal ROIs. Also, 

performance was assessed as a function of the composition of the knowledge 

base in terms of the number of FP or normal ROIs needed by the system to 

reach optimal performance. The results indicated that the knowledge base 

needed no more than twenty times as many FPs and thirty times as many normal 



Page 3 of 35 

ROIs as masses to attain maximal performance. The best overall system 

performance was 85% sensitivity with 2.4 FPs per breast volume for scheme A, 

3.6 FPs per breast volume for scheme B and 3 FPs per breast volume for 

scheme C.  

Keywords: Computer Aided Detection, Tomosynthesis, Mass Detection, 

Projection Images, Reconstructed Volume, Information Theory, Mutual 

Information, Knowledge Base, Breast Imaging, Mammography, Masses 
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Ι . INTRODUCTION 

Mammography is currently the most effective early-detection tool for 

breast cancer screening. To provide a reliable and efficient second-reader to aid 

breast-imaging radiologists, recent research has been directed towards 

developing computer-aided detection (CADe) tools for mammography.1-17 

Although these tools have shown promise in identifying calcifications, detecting 

masses has proven relatively more difficult primarily due to presence of dense 

overlying tissue in a mammogram. Breast tomosynthesis has the potential to 

improve detection and characterization of breast masses by removing 

overlapping dense fibroglandular tissue. These systems provide 3D slice images 

from a modified full field digital mammography system which acquires a limited-

angle cone beam CT scan under mammography positioning. Recent studies 

such as that by Poplack et al18 demonstrated decreased recall rate and superior 

image quality for tomosynthesis versus conventional mammography. The goal of 

tomosynthesis to provide 3D information at comparable dose, resolution, and 

patient throughput to mammography, and with lower cost and hardware 

requirements compared to alternatives such as breast Computed Tomography or 

breast Magnetic Resonance Imaging. However, with tomosynthesis, instead of 

the traditional 4 mammography views per case, the radiologist must interpret a 

large volume of data per breast volume. Given this constraint, the role of CADe is 

especially important in breast tomosynthesis. If this modality is ever intended to 

replace mammography as a screening tool, then a CADe algorithm that presents 

the radiologist with initial cues could potentially become indispensable to 
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maintain current clinical workflow. In fact, investigators in CT colonography have 

already begun to show that CADe can potentially ease radiologist workflow with 

large 3D datasets.19 

 Previous CADe studies have reported CADe models for breast 

tomosynthesis. Reiser et al20 have modified their 2D mammography algorithms to 

work with 3D tomosynthesis data. Their dataset consisted of 36 cases wherein 

35 were biopsy proven malignant masses and 1 was benign. The training and 

testing set were the same, resulting in sensitivity of 90% with 1.5 false positives 

(FP) per breast volume.20 Chan et al21 have combined information from 2D 

projection images with 3D volumes in 52 cases wherein 41 were malignant 

masses and 11 were benign. They reported sensitivities of 80% and 90% at an 

average FP rate of 1.2 and 2.3 per breast respectively while using a leave one 

out cross validation scheme. Comparable performances have been reported in 

other studies using smaller datasets.22-24 

 We propose to build a CADe scheme for tomosynthesis, incorporating 

unique preprocessing techniques and information theory methods. The CADe 

system in this study has two key components: 1) a highly sensitive mass 

detector, and 2) statistical models designed to reduce false-positives.  The ‘high-

sensitivity, low specificity’ stage of the proposed algorithm is the first component 

and is comprised of a Difference of Gaussians (DoG) filter.  The second, ‘high-

sensitivity, high-specificity’ stage of the algorithm is comprised of false positive 

(FP) reduction using information theory principles. Previous 2D algorithms for 

mammograms that use information theory and similarity metrics to reduce false 
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positives have shown that the ability of the system to optimally perform such a 

task is dependent on the nature of the ‘known’ examples in the database 

available to it as the learning cases.25,26 Therefore, further analysis is performed 

to identify the optimal knowledge base for our system. Three FP reduction 

schemes were evaluated that differ in the kind of information available for the 

task of false positive reduction. Finally, to explore if there are performance 

increases to be realized if more signal information was given to the system, two 

variants of the FP reduction system were compared – using only the central 

reconstructed slice of the CADe suspicious location versus using a summed slab 

of slices.   
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ΙΙ . METHODS AND MATERIALS 

A. Dataset 

Our dataset was collected using a prototype breast tomosynthesis system 

Mammomat Novation TOMOa by Siemens Medical Solutions (Erlangen, 

Germany), which acquires 25 projection images over a 50-degree angular range 

in approximately 13 seconds. The projection images are acquired using an 

amorphous selenium direct digital detector with a large surface area (24x30 cm) 

and with an 85-micron pixel pitch. Projection images of 2816x3584 pixels with 

2x1 pixel binning in the tube motion direction are acquired by this system at the 

rate of 2 images/second. Institutional review board approval was obtained, and 

informed consent was required and obtained for all subjects. This study was 

compliant with the Health Insurance Portability and Accountability Act. The 

protocol called for bilateral MLO views to be acquired in screening cases, while 

bilateral MLO and CC views were acquired for diagnostic and biopsy cases. An 

MQSA dedicated breast radiologist with over fifteen years of experience 

interpreted these cases in blinded readings. The gold standard was established 

from information available from all modalities for a subject including 

mammography and, when available, ultrasound and MRI for non-biopsied 

lesions, while biopsied lesions resulted in definitive histopathologic truth. One 

hundred human subject cases were used wherein there were twenty-five mass 

cases and seventy-five normal cases. All of these subjects were recruited at 

Duke University Medical Center in Durham, NC and had an average age of 57 

                                                
a Caution: Investigational Device. Limited by US Federal law to investigational use.  The 
information about this product is preliminary. The product is under development and is not 
commercially available in the US; and its future availability cannot be ensured. 
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years. Approximately 24% of the subjects had breast density of 25%, 20% were 

50% dense, 46% were 75% dense and 10% were considered to have 100% 

dense breast.  83% of these subjects were Caucasian, 13% African-American 

and 4% identified themselves as either Hispanic or Asian. Due to some unilateral 

cases, a total of 192 scans were evaluated. The twenty-five mass cases 

contained twenty-eight lesions of which ten were biopsy-proven malignant 

lesions and the rest were benign. Focal asymmetries and calcifications were 

excluded from this study. Average lesion size is approximately (100x100) ± 41 

pixels or (8.5 x 8.5) ± 3.5 mms. 

B. Overview of the CADe system 

The CADe scheme is comprised of two distinct stages – the ‘high-sensitivity, 

low specificity’ stage wherein ROIs are extracted followed by the ‘high-sensitivity, 

high-specificity’ stage that uses information theory principles to reduce false 

positives. We worked with the raw projection images with only standard detector 

preprocessing including dead pixel and uniformity correction. A schematic of the 

2 stages can be seen in Figures 1 and 3. The system performs the following 

steps: 

a. For each of the 25 projection images, the breast edge was detected by 

estimating an optimal threshold to distinguish the class distributions of the 

foreground and background pixels. Only information inside the breast 

boundary was preserved and was subsequently filtered.   

b. Threshold segmented, filtered projection images from step (a) to yield 

CADe suspicious locations in 2D. 
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c. Reconstruct only the CADe suspicious locations generated by step (b) via 

shift and add reconstruction method to yield 3D volumes of CADe 

suspicious locations.27 

d. Locate the center of the CADe reconstructed suspicious locations in 3D 

and map to the filtered backprojection (FBP) 3D reconstructed volume 

used during radiologist interpretation. 

e. Extract ROIs from FBP reconstructed slices at the locations specified in 

step (d). 

f. Implement various FP reduction schemes to attain final system 

performances. 

 
 
Figure 1: Stage 1 – the filtration and ROI extraction or the ‘high-sensitivity, low 
specificity’ stage of the CADe algorithm 
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1. Stage 1 – Filtration and ROI extraction 

For each breast view, the 25 projection images were filtered using a 

Difference of Gaussians (DoG) filter.28-30 The DoG filter in two dimensions is 

achieved by subtracting a rotationally symmetric, two-dimensional Gaussian with 

width parameter σ1 from another rotationally symmetric, two-dimensional 

Gaussian with width parameter σ2. Mathematically, the filter template w is defined 

as: 
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where r is the distance to the origin and σi is the constituent width parameter of 

the filter template. Of note here is the relationship between the two standard 

deviations where σ1 < σ2. 

Each of the filtered projection images was then subjected to adaptive 

thresholding to yield CADe suspicious locations in each of the projections. In that 

process, the thresholds for each of the projection images were dynamically 

selected by starting with the top 10% of the pixel values of the filtered projection 

image resulting in an initial set of CADe suspicious locations. Further drops in the 

threshold resulted in either an increase in the area of the initial suspicious 

locations or in the formation of new ones. The threshold was thus dropped as low 

as possible without merging together any two suspicious locations. For dense 

breasts, this threshold often included approximately 15% of the top pixel values, 
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while for fatty breasts the thresholds were generally selected at about 25% of the 

top pixel values. Only the segmented 2D projection images thus obtained were 

shifted and added using the acquisition angle and known geometry to yield 3D 

locations of the volume of interest (VOI) of just the CADe locations.31  

A 3x3x3 connectivity rule was used to yield CADe suspicious locations in 

3D space making it possible to determine location and shape of the object of 

interest. Specifically, every pixel in each of the slices of the reconstructed slices 

of the CADe suspicious locations was assigned to a VOI using its proximity to a 

cluster of pixels. This resulted in a set of VOIs for every scanned breast view. 

Since the shift and add reconstruction algorithm did not have any measures in its 

implementation to prevent out of plane blur, the resulting reconstructed CADe 

suspicious volumes from the first stage had significant blur in planes other than 

where the centroid of the volume of interest lies, resulting in a starburst shape 

wherein the true object lies in the plane where the contributions from all the 

projection images come into focus. Thus, it is assumed that a mass came into 

focus in the plane with the least cross-sectional area of the volume obtained after 

reconstruction. False positives due to overlapping tissue in just a few projection 

images should result in weaker 3D reinforcement of signals. An example of such 

a reconstruction is shown in Figure 2. This 3D location of the volume of interest 

was then compared to the radiologist-determined ground truth to determine if a 

given CADe location is a true positive or a false positive. To determine whether a 

CADe suspicious location is indeed a TP, the following rule was used: 

! 
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A CADe( )# A Truth( )
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where A(CADe) is the area of the CADe location, and A(Truth) is the area of the 

truth location. 

The optimization of the first high-sensitivity, low-specificity stage of the 

algorithm was done using all available cases, as there were not enough mass 

cases in our database to establish separate reasonably sized testing and training 

sets. The figure of merit was the maximum sensitivities as a function of the 2 

DoG parameters, σ1 and σ2. For the lesions in our database, the average size is 

approximately 100x100 pixels (8.5 x 8.5 mm). A search was therefore performed 

wherein the filter parameters were varied from 32 to 152 pixels (2.7 to 12.92 mm) 

to bracket that size.  

Once the algorithm had identified initial candidates for mass detection by 

giving the X, Y and Z location of the centroid of the volume of interest, regions of 

interests (ROIs) were extracted from the reconstructed breast slice images 

obtained by filtered backprojection (FBP) which yielded 1 mm thick slices with 

85x85 micron pixel pitch.32,33 Also shown in the Figure 2 is the corresponding 

lesion ROI that was extracted from the FBP reconstructed volume. The FP 

reduction scheme therefore was based upon the same reconstructed image data 

as used by radiologists. Two sets of ROIs were extracted to assess the effect of 

information from one versus many slices. In the first set, 256x256 pixel ROIs (22 

x 22 mm) centered at the central slice containing the suspicious CADe location 

were extracted. For the second set, 256x256 ROIs representing the summed 

slab of 5 slices (5 mm) were extracted. Since lesions typically span multiple 

reconstructed slices, these two sets investigated whether giving more ‘signal’ to 
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the false positive reduction scheme resulted in an improvement in performance. 

Use of a slab would also reduce the impact of slight errors of localization in the Z 

direction.  

 

Figure 2: (a) 25 CADe suspicious locations in 2D for subject 33 (b) 
Reconstructed CADe suspicious locations using the images in ‘a.’ Significant out 
of plane blur is observed in Z direction. (c) A 256x256 ROI centered at the X, Y 
location at the depth with the sharpest focus is extracted from the FBP 
reconstructed volumes and shown in ‘b.’ 
 

2. Stage 2 – False positive reduction 

Information theory principles were used to reduce false positives (FPs) in 

the second stage of the algorithm. The fundamental quantities of information 

theory are entropy and relative entropy. For any probability distribution, entropy is 

defined as a quantity that follows an intuitive notion of a measure of information. 

In other words, entropy, among other measures such as variance etc, is a way to 

quantify the uncertainty involved in a random variable. This notion is extended to 

define ‘mutual information’ which is a measure of the amount of information one 
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random variable contains about another. Hence, mutual information is a 

reduction in the uncertainty of one random variable due to the knowledge 

gleaned from observing the other random variable. Mathematically, it is given by 

the following relation34: 
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where X and Y are two random variables, 

! 

p x,y( )  is their joint probability mass 

function because this is a discrete rather than continuous random variable and 

! 

p x( )  and 

! 

p y( )  are the marginal probability mass functions of X and Y.  

Traditionally CADe schemes measure, among others, morphological and 

texture features of a suspicious location for subsequent false positive reduction 

using trainable classifiers. Research has been done by Suzuki et al35-38 towards 

alternative approaches to FP reduction by using massive training artificial neural 

networks. This study used mutual information as a similarity metric for false 

positive reduction that relies completely on the statistical properties of the image 

histograms and the relationship between pixels of an image. Furthermore, 

information theoretic similarity measures make no assumptions about the 

underlying image distributions, which may be advantageous given the relatively 

small number of lesions in our dataset. The theoretical approach adopted in this 

study has been presented previously39-41 for 2D mammograms. This study 

extended the concept for 3D reconstructed slices and slabs. 

An information theory based system compares an unknown query ROI to 

every ROI in its ‘knowledge base’ (KB) using a similarity metric such as mutual 
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information. Similarity metrics are then combined using a decision index41 given 

in equation 4. 
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where Q is the query ROI, 

! 

MI •,•( )  is the mutual information between the query Q 

and the ROI in the KB. Mj and Nj are the jth mass and normal ROI respectively in 

a KB that contains a total of m mass and n normal ROIs. By applying various 

thresholds on these indices for all cases in the database the performance can be 

studied as a receiver operating characteristic (ROC) curve. Both area under 

curve (AUC) and partial area under curve (pAUC) above 90% sensitivity were 

measured nonparametrically.42,43 To estimate the two-sided p-value for the 

central slice versus sum of adjacent slices datasets for each scheme, a set of 

cases was bootstrapped to estimate the difference in performance. This was 

repeated to obtain an estimate of the difference distribution.  
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Figure 3: Composition of Knowledge Base of false positive reduction stage of the 
CADe algorithm (a) scheme ‘A’ KB composition (b) schemes ‘A’ and ‘B’ 
composition 
 

The performance of an information theory based system is dependent on 

the composition of the knowledge base.  The first stage of the algorithm 

generates ROIs that are either mass lesions or FPs. Of note here is the 

imbalance in the number of lesion ROIs when compared to the total number of 

FPs generated by the first stage. Given this imbalance, it is imperative to explore 

the effect of knowledge about normal breast parenchyma represented by those 

FPs. This was studied in two ways. First, an increasing number of FPs was 

sampled from all FPs available while holding the number of true positives 

constant, thus decreasing the ratio of mass ROIs in the KB and progressively 

giving the system more indirect ‘knowledge’ of normal breast parenchyma. The 

second approach is to provide the system with direct information about normal 
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breast parenchyma via randomly selected normal ROIs instead of suspicious FP 

regions generated by a CADe algorithm. Since these ROIs were extracted from 

random locations from within the breast volume there is a potential for some 

overlap with FPs generated by the first stage of the algorithm. Varying the 

number of mass ROIs in the knowledge base can also change composition of the 

knowledge base. However, given that our database consists of a limited number 

of mass ROIs, its effect was not studied in this experiment.  

Three schemes were therefore developed to investigate the optimal ratio 

of normal and false positive ROIs in the knowledge base, as shown in Figure 3. 

In scheme A, FP reduction was done using a KB containing ROIs from the CADe 

algorithm’s first stage. These ROIs were either mass ROIs or FPs. In scheme B, 

the KB contained only mass ROIs and randomly selected normal ROIs from well-

separated depths in all the normal cases’ reconstructed volumes. A total of 1390 

such normal ROIs were extracted for this study. To access performance of the 

scheme A classifier, a leave-one-case-out validation scheme was used. Thus, for 

every ROI that was presented to the system as a query ROI of unknown 

pathology, all other ROIs generated from that specific subject’s reconstructed 

volumes were excluded from the KB. For scheme B, all the FPs of the first stage 

of the algorithm served as queries to the system to assess its specificity. 

Sensitivity for scheme B was evaluated using a leave-one-case-out sampling 

scheme on all available ROIs that contained a mass. Thus the system has no 

knowledge of FP ROIs in its KB and hence the performance is not dependent on 

the nature of FP lesions generated by the first stage of the algorithm. Finally, 
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scheme C included information from all three sources, (1) masses (2) CADe 

generated FPs (3) normal breast tissue, combined into a single KB. Analysis was 

done in a leave-one-case-out manner for this KB as well. In the end, the scores 

for all ROIs thus obtained from various schemes were then combined using the 

decision index given by equation 4. 
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ΙΙΙ . RESULTS 

A. Optimization of stage 1   

 

Figure 4: Sensitivity as a function of the 2 filter parameters for stage 1 of the 
algorithm. The combination marked by the ‘+’ was chosen, yielding 93% 
sensitivity with 7.7 FPs/ breast volume. 
 

Optimization of the first high-sensitivity, low-specificity stage of the 

algorithm involved a grid search over the 2 DoG parameters, σ1 and σ2. 

Maximum sensitivity for each combination is shown in Figure 4. The parameter 

sets that were not explored are represented with a zero percent sensitivity. While 

the FP rate for each parameter set was recorded, no specific optimization for the 

FP rate was performed. There were 2 distinct areas with high reported 

sensitivities, centered at σ1 and σ2 pairs of 40/ 72 (3.4/ 6.12 mm) and 56/ 96 

pixels (4.76/ 8.16 mm) with 9.3 and 7.7 FPs/ breast volume respectively. The 



Page 20 of 35 

parameters 56/ 96 yielded fewer false positives and were therefore picked for 

further analysis of stage 2. Thus, the first stage of the algorithm yielded a 

maximum sensitivity of 93% and 1472 FPs resulting in a FP rate of 7.7 FPs per 

breast volume. All available cases were used for the optimization of this stage 

due to the small size of the dataset resulting in the possibility of a positive bias in 

the reported performance of the proposed algorithm. 

B. Optimization of the FP reduction stage 

B. 1. Scheme A - effect of FP ROIs in the KB 

Scheme A seeks to differentiate between a mass and a FP query. A plot 

of the ROC AUC as a function of increasing number of FPs is presented in 

Figure 5, where the x-axis shows number of FPs as multiples of the total number 

of mass ROIs while using the scheme A classifier. The error bars are obtained by 

simple random sampling25,44 from all the available FPs of the first stage. 20 

subsets of the FP ROIs were generated for each data point on the graph. Each 

subset was selected without replacement after randomization between subsets. 

When the sum of adjacent slices were used, as the number of FPs was 

increased the performance increased. When there were twenty times as many 

FPs as mass ROIs, the system reached a sensitivity of 89%. Adding more FP 

ROIs no longer improved the performance. A similar trend was observed while 

using only the central slice of the VOI with a maximum sensitivity of 88%. 

Addition of more FP ROIs after a ratio of 25 times that of the masses again does 

not improve performance. It should be noted that as the number of multiples of 
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FP in the KB increases, the error bars in Figure 5 will also decrease because of 

increasing overlap in selected FP ROIs for each draw. 

 

Figure 5: The figure of merit, ROC AUC is plotted as a function of increasing 
number of FP ROIs in the system.  
 

B. 2. Scheme B - effect of normal ROIs in the KB 

Scheme B assessed the behavior of the system with the presence of 

normal ROIs in the KB. Figure 6 depicts this trend as a function of increasing 

number of normal ROIs in the system. As previously described in section B.1., 

the error bars are obtained when the same data point of the graph is evaluated 

using 20 different subsets of the normal ROIs available. AUC increased as more 

normal ROIs were added to the KB and levels off at a ratio of 25 times as many 

normals as masses for sum of adjacent slices. The same leveling off in 

performance for central slice was seen with 30 times as many normals as mass 

ROIs. Performance was comparable to that of scheme A. Scheme B attained a 

maximum classifier AUC of 86% for central slice ROIs and 89% for sum of slices 

ROIs. As with scheme A, use of the slab ROIs did not affect performance 
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substantially, although here in scheme B it had a more noticeable increase in 

performance than for scheme A.  

 

Figure 6: The figure of merit, ROC AUC is plotted as a function of increasing 
number of normal ROIs in the system.  
 

C. Classifier Performances 

Table 1 presents overall classifier performance for all schemes. As 

implemented, summing adjacent slices did not improve the classifier 

performance in a statistically significant way compared to using only the single, 

central slice ROI for any of the schemes evaluated, either for AUC or partial 

AUC. Shown in Figure 7 are the ROCs and partial ROCs of just the central slice 

classifiers of all schemes.  

Table 1: Classifier performance for a KB containing mass and FP ROIs (scheme 
A), mass and normal ROIs (scheme B) and when the KB contains ROIs from all 
3 sources – mass, FP and normal ROIs (scheme C). The AUC and pAUC for 
both the central slice and the sum of adjacent slices and their corresponding p-
values for all schemes is shown.  

Central Slice only Sum of Adjacent slices p-value 
Scheme 

AUC pAUC AUC pAUC AUC pAUC 

A 0.88 +/- 0.02 0.49 +/- 0.09 0.89 +/- 0.03 0.46 +/- 0.10 0.3 0.2 

B 0.86 +/- 0.03 0.41 +/- 0.09 0.89 +/- 0.03 0.36 +/- 0.10 0.5 0.2 

C 0.87 +/- 0.02 0.45 +/- 0.09 0.88 +/- 0.03 0.41 +/- 0.10 0.43 0.19 
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Figure 7: (a) Non-parametric ROC curves of the central slice classifier for 
schemes A, B, and C (b) Partial ROC curves for sensitivity greater than 0.9 for 
the three schemes 

 

Sensitivity when plotted as a function of the average FP rate while the 

decision threshold is varied results in the Free-Response Receiver Operating 

Characteristic (FROC) curve. Figure 8 shows the system FROCs prior to FP 

reduction as well as after FP reduction for schemes A, B and C. These were 

obtained by varying the decision threshold over classifier outputs of the central 

slice classifiers of the three schemes starting with a threshold set at 91.5% 

sensitivity. For each scheme, the threshold was then progressively dropped to 

obtain the entire curve. Scheme A outperformed others in terms of FPs per 

breast volume at equivalent sensitivity. At an operating point of 91.5%, scheme A 

was successfully able to discard 69% of the FPs per breast volume, scheme B 

correctly eliminated 53% of the FPs per breast volume, and lastly, scheme C was 
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able to correctly discard 62% of the FPs per breast volume. The final 

performances were a sensitivity of 85% at 2.4 FPs per breast volume, 3.6 FPs 

per breast volume, and 3 FPs per breast volume for schemes A, B and C 

respectively. The Jackknife Free-Response Receiver Operating Characteristic 

(JAFROC)45 was used to evaluate these FROC curves. None of the differences 

between the FROC curves of the three schemes studied were statistically 

significant. A human subject example from subject 122 is shown in Figure 9. 

While this subject had 5 FPs in total only 2 reconstructed slices containing 1 TP 

and 2 FPs are shown for illustration purposes. These results were obtained when 

the CADe algorithm with a scheme A central slice classifier is used while 

operating at 91.5% sensitivity. After FP reduction, the FP in slice 40 was 

eliminated, however one FP along with the TP survived in slice 36. This subject 

had biopsy confirmed cancer. 
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Figure 8: System FROCs. Prior to FP reduction, the system performance was at 
93% sensitivity with 7.7 FPs per breast volume. Final system performances for 
the three schemes are depicted for the central slice classifiers.   

 

Figure 9: (a) Slice 41 prior to FP reduction (b) Slice 41 after FP reduction (c) 
Slice 21 prior to FP reduction (d) Slice 21 after FP reduction 
Subject 122 had biopsy confirmed carcinoma. While this subject had 6 FPs in 
total from stage 1 of the CADe algorithm, only reconstructed slices 41 and 21 are 
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shown in this figure for illustration. After setting the threshold for scheme A 
central slice classifier to operate at 91.5% sensitivity, we are able to eliminate the 
FP in slice 21. However, the FP in slice 41 survives along with the TP. 
IV. DISCUSSION  

 Several CADe algorithms exist for breast tomosynthesis data in current 

literature. All published tomosynthesis CADe algorithms used some form of 

feature extraction scheme for the FP reduction stage. This study was unique in 

that it utilized information theory principles for this task. Given this relatively small 

dataset, the model still provided generalizable results when using scheme B. The 

generalizability here refers only to the fact that scheme B performance is 

independent of the nature of FPs generated by the first stage of our specific 

algorithm. The performance of schemes A and C can be influenced by the nature 

of FPs generated by other filters or another first stage of a CADe algorithm, 

whereas that of scheme B is independent of the kind of FPs. Additional 

information about mass cases would merely enhance system performance over 

datasets that include subjects from other geographical locations, patient 

populations etc. This is because inclusion of more mass cases will help the 

system obtain more accurate ‘knowledge’ of the various kinds of mass cases. A 

larger, more varied KB will have at least representative examples from all the 

major lesion types and will better capture the variations of various lesions. 

As the amount of data available increases, an understanding of what 

constitutes an optimal KB in terms of the optimal number of FPs and/or normals 

will become pivotal for all practical applications. This is because similarity metrics 

need to be calculated for each query presented to the system with every ROI in 

the database. If there is nothing to be gained in terms of performance, then 
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having more ROIs in the database simply adds to time needed for the system to 

generate CADe marks on a new case. To better understand the composition of 

such an optimal KB for tomosynthesis data, three FP reduction schemes were 

compared, each based on ROIs from only a single central slice versus a summed 

slab of slices from the first stage of the algorithm. While doing so, several trends 

were observed. There was no statistically significant difference in classifier 

performance when comparing the use of a single, central slice only versus the 

sum of adjacent slices, regardless of whether the AUC or partial AUC was the 

figure of merit. Scheme B’s performance was almost the same as that of A and 

C, even though B doesn’t use FPs in its KB. The performance of scheme B was 

independent of the nature of FPs generated by the first stage of the algorithm. 

JAFROC analyses of the system performances for the three schemes also 

indicate that there is no statistically significant difference between scheme B 

when compared against scheme A and C. Thus the results obtained for scheme 

B may be more robust when given either different cases or another set of 

unknown ROIs from these same cases that contain false positives generated by 

a different filter or algorithm. The performance of scheme C was between that of 

A and B as it added the use of FPs in its KB. 

The study of the optimal balance between positive and negative cases in 

the KB also yielded several interesting trends. For scheme A, the system 

reached its maximum performance with a FP ratio of twenty times that of mass 

ROIs in its KB. A similar trend was observed in scheme B when the KB contained 

information about only masses and normal breast tissue where nearly thirty times 
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as many normal ROIs were needed in the KB as mass ROIs. Thus it appeared 

that scheme B required more examples of randomly extracted normal ROIs 

compared to scheme A which used more suspicious normal anatomy presented 

in FP ROIs. Regardless of the nature of the negative, non-mass cases, both 

systems showed that when given increasingly larger number of non-mass ROIs 

in its KB, their performance increased toward an asymptote. Furthermore, we 

found that more non-mass ROIs than mass ROIs were needed in order for the 

algorithm to learn the naturally greater variability of normal breast anatomy. Both 

schemes displayed larger standard deviations in performance levels initially with 

tighter confidence levels attained as the schemes were given increasing 

information about the diversity of normal breast tissue.  

Estimates of the least number of FPs or normal ROIs needed to obtain 

maximal performance can potentially change when more mass ROIs are added 

to the KB. However, a study of what that optimal number is with the current size 

of the dataset has lead us to the understanding that fewer FPs and normal ROIs 

in the KB result in greater variability in performance, and that there indeed exists 

a minimal ratio of these ROIs to the number of mass ROIs in the KB to attain 

maximal performance. Therefore, while such a ratio is likely to change with 

additional mass cases, there are 2 important conclusions to be drawn from these 

results. 

These results of experiments to study optimal knowledge base 

composition show that for the current CADe system it is possible to attain 

maximal performance with little over half the number of ROIs in virtually all the 
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three schemes. This is significant as it implies an appreciable improvement in the 

computational efficiency of the algorithm. The total processing time for the 

second stage of this algorithm that uses a LOO CV scheme is N2/2. A reduction 

in the number of ROIs in the knowledge base by half would imply an 

improvement of a factor of 4 in overall computational efficiency.  However, in a 

clinical setting the computational efficiency needs to be looked at from the point 

of view of a single breast volume being examined. The first stage of the algorithm 

generates approximately 8 CADe marks per breast view. When using a Linux 

Intel 2.6 GHz dual-core dual-processor system, it takes about 1 second for the 

system to come up with an average MI score for a single query ROI when 

compared against our entire knowledge base. This implies a processing time of 

about 2 seconds to come up with each of the two terms for equation 4 for every 

CADe mark from the 1st stage, and hence about 16 seconds to process the entire 

breast volume with 8 such potential locations generated by the 1st stage of the 

algorithm. Reduction in the knowledge base of half would imply a computational 

reduction of half, i.e. 8 seconds, in a clinical setting. 

 There were limitations to this study. More cases with lesions should be 

added to capture the diversity of breast masses. Because of the relatively small 

size of available dataset, the optimization of the initial filtering stage was done 

using all available cases with some resulting possibility of bias; addition of new 

cases could potentially imply a different optimal filter parameter set. The decision 

to sum five adjacent slices was based on the observation that most lesions 

spanned a space of at least 5 mm. Improvements in performance due to variation 
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of this parameter in the algorithm has not been investigated in this study. Lastly, 

studies remain to be done in improving system performance by studying other 

similarity metrics and ROI sizes.  
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V. CONCLUSION 

 A CADe system for breast tomosynthesis was developed which attained 

promising results over a dataset of one hundred human subjects consisting of 

twenty-five mass cases. The best overall system performance was achieved 

while using a knowledge base consisting of mass and false positive ROIs. 

Adding normal ROIs in addition to or in place of the false positives resulted in the 

same sensitivity but slightly worse specificity, but may represent more 

generalizable results as doing so decreased the dependence on specifics of this 

detection algorithm. In conclusion, this CADe system was based on a human 

subject data set and used an innovative false positive reduction scheme of 

feature-less information theory based similarity metrics, and demonstrated 

promising results for mass lesion detection.  
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Abstract. Tomosynthesis as a technique is being developed and studied with 
the goal of overcoming mammography’s limitations due to overlying tissue. 
Various algorithms exist for tomosynthesis datasets including a novel Computer 
Aided Detection (CADe) algorithm using a featureless False Positive (FP) 
reduction stage. The goal of this project is to study the previously unexplored 
effects of variation of Region of Interest (ROI) sizes as well as the crucial 
similarity metrics for such a CADe algorithm’s performance. Four datasets 
consisting of 1479 tomosynthesis ROIs were generated by a CADe algorithm 
from reconstructed volumes of one hundred subjects consisting of 4 different 
sizes – 128 x 128, 256 x 256, 512 x 512, and 1024 x 1024 pixels. Five different 
similarity metrics – (1) mutual information, (2) average conditional entropy, (3) 
joint entropy, (3) Jensen divergence and (4) average Kullback-Leibler 
divergence were used for the task of FP reduction using a leave-one-case-out 
sampling scheme. Mutual information and average conditional entropy were the 
best performing metrics with an Area Under Curve (AUC) of 0.88. Cross-bin 
measures performed consistently higher than those that rely on only marginal 
distributions. Also, for all metrics, the datatset consisting of 256 x 256 pixel 
ROIs gave the best performance. In conclusion, for the tomosynthesis dataset, 
cross-bin measures such as MI and average conditional entropy should be used 
over other metrics using a ROI size of 256 x 256 pixels.  

Keywords: Tomosynthesis, 3D CAD, Computer Aided Detection, 
mammography, x-ray. 



1   Background 

Mammography remains the primary screening tool for breast cancer today. However, 
mammography has limitations because it takes two-dimensional images of a three-
dimensional breast. Hence, overlying tissue can easily make it impossible to see 
underlying masses. Tomosynthesis, a limited angle cone-beam CT technique, has 
been proposed to overcome this shortcoming by providing radiologists reconstructed 
volumes of breasts to look at. These reconstructed volumes often consist of tens of 
slices, all of which the radiologist needs to look at thus potentially increasing their 
reading time per case. Given that nearly eighteen million women get their 
mammograms annually is US, this increase can have dramatic consequences on 
clinical workflow.  

 
Many CADe algorithms exist for tomosynthesis datasets [1-7]. A novel approach 

for such CADe algorithms is to reduce False Positives (FPs) via featureless CADe 
using information theory principles [8-15]. Some research has been done using 
previously determined ROI sizes and similarity metrics for tomosynthesis datasets. 
However, there remains the potential of improving on these performances by 
optimization of these parameters. 

2   Methods 

Reconstructed breast volumes of one hundred subjects were used in this study 
consisting of 25 mass and 75 normal volumes. The average size of the lesions in this 
dataset was approximately 100 x 100 pixels (8.5 x 8.5 mm). Four distinct Region of 
Interest (ROI) datasets were extracted from these volumes consisting of 128 x 128, 
256 x 256, 512 x 512, and 1024 x 1024 pixels (where pixel pitch was 85 microns). 
Each of these datasets consisted of 1479 computer generated tomosynthesis ROIs 
from reconstructed volumes that were extracted using an existing CADe algorithm.  

 
For each of these datasets, False Positive (FP) reduction was done using principles 

of Information Theory wherein similarity metrics are computed between each ROI of 
unknown pathology to those in a database of pre-existing ROIs of known pathology. 
Such a database of ROIs consisting of known pathologies is often referred to as the 
Knowledge Base (KB). Many similarity metrics have been studied for the task of 
false positive reduction in mammographic ROIs. In this study we have investigated 
the following five metrics: 
 

1. Mutual Information: 
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2. Joint entropy: 
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3. Average conditional entropy:  
 

 (3) 

 
4. Jensen divergence:  
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5. Average Kullback-Leibler divergence: 
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p y( )  are the marginal probability mass functions of X and Y, 
and H(x|y) and H(y|x) are the conditional entropies of the two images. All such 
metrics were then combined using a decision index to obtain a CADe score. These 
scores were then thresholded to yield ROC curves and the consequent AUCs and 
partial area under curve (pAUCs).  
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3   Results 

Results for all four datasets when each of the 5 metrics were individually evaluated 
are graphically represented in figure 1. For the best performing metrics, mutual 
information and average conditional entropy, the metrics along with their partial 
AUCs of > 0.90 sensitivity are listed in table 1. Figure 2 shows a human subject 
example with 2 reconstructed slices when using a classifier that works with 256x256 
pixel ROIs and Conditional Entropy as a similarity metric. The true positive location 
is preserved during the false positive reduction stage, however 2 other false positives 
survive along with it as well. 

 

ROI size Mutual Information Average conditional Entropy 

 AUC pAUC AUC pAUC 

128 x 128 0.61 +/- 0.02 0.08 +/- 0.03 0.62 +/- 0.02 0.08 +/- 0.03 

256 x 256 0.88 +/- 0.02 0.49 +/- 0.09 0.88 +/- 0.02 0.48 +/- 0.09 

512 x 512 0.70 +/-  0.04 0.27 +/- 0.04 0.66 +/-  0.04 0.10 +/- 0.03 

1024 x 1024 0.58 +/- 0.03 0.01 +/- 0.04 0.57 +/- 0.03 0.01 +/- 0.04 

Table 1. Various AUCs and pAUCs (AUC > 0.9) for the best performing metrics – mutual 
information and average conditional entropy 

 



 

Fig. 1. Variation in ROC AUC for the four datasets being investigated consisting of varying 
ROI sizes for all 5 metrics being explored in this study. 

 



 

Fig. 2.  Human subject example (a) Reconstructed slice with 1 true positive and 1 false positive 
each. (b) Reconstructed slice with another false positive within the same reconstructed volume. 
All results obtained when using a classifier that utilizes 256x256 pixel ROIs and Conditional 
Entropy as a similarity metric. 

4   Discussion 

Encouraging performance was obtained using the novel featureless CADe FP 
reduction scheme on tomosynthesis ROIs. The best performance across all measures 
was obtained using 256 x 256 pixel ROIs. Since the average lesion size in the dataset 
was 100 x 100 pixels, this reinforces the need to fully encompass the mass for optimal 
performance. Also, cross-bin measures that utilize joint probability distributions 
consistently outperformed measures that rely on only the marginal distributions for 
knowledge-based discrimination of masses from normal regions. Among cross-bin 
measures that incorporate information from non-corresponding bins, mutual 
information and conditional entropy outperformed joint entropy. It is possible that 
cross-bin measures are more capable at capturing some aspects of visual content more 
effectively than bin-by-bin measures. When the ROI size reaches 1024 x 1024 pixels, 
the performance of all similarity metrics approaches chance.  
 

However, a drawback of information theory based techniques is that the localized 
spatial relationships among the image pixels are lost when working with image 



histograms. This limitation has been addressed before in the context of image 
registration. It has been proposed that taking into account the neighborhood of regions 
of corresponding image pixels may be a more effective strategy. In on-going work, 
these results will be applied to full image volumes to assess free-response ROC 
results. 
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Evaluating the Effect of Image Preprocessing
on an Information-Theoretic CAD

System in Mammography1

Georgia D. Tourassi, PhD, Robert Ike III, BS, Swatee Singh, BS, Brian Harrawood, BS

Rationale and Objectives. In our earlier studies, we reported an evidence-based computer-assisted decision (CAD) sys-
tem for location-specific interrogation of mammograms. A content-based image retrieval framework with information the-
oretic (IT) similarity measures serves as the foundation for this system. Specifically, the normalized mutual information
(NMI) was shown to be the most effective similarity measure for reduction of false-positive marks generated by other pre-
screening mass detection schemes. The objective of this work was to investigate the importance of image filtering as a
possible preprocessing step in our IT-CAD system.

Materials and Methods. Different filters were applied, each one aiming to compensate for known limitations of the NMI
similarity measure. The study was based on a region-of-interest database that included true masses and false-positive re-
gions from digitized mammograms.

Results. Receiver-operating characteristics (ROC) analysis showed that IT-CAD is affected slightly by image filtering.
Modest, yet statistically significant, performance gain was observed with median filtering (overall ROC area index Az im-
proved from 0.78 to 0.82). However, Gabor filtering improved performance for the high-sensitivity portion of the ROC
curve where a typical false-positive reduction scheme should operate (partial ROC area index 0.90Az improved from 0.33
to 0.37). Fusion of IT-CAD decisions from different filtering schemes markedly improved performance (Az � 0.90 and
0.90Az � 0.55). At 95% sensitivity, the system’s specificity improved by 36.6%.

Conclusions. Additional improvement in false-positive reduction can be achieved by incorporating image filtering as a
preprocessing step in our IT-CAD system.

Key Words. CAD; mammography; image processing; information theory.
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Despite advances in treatment, breast cancer remains the
second leading cause of cancer death in women (1). The
role of screening mammography in the battle against
breast cancer is well established; women with malignan-
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cies detected at an early stage have a significantly better
prognosis (2). However, it is also recognized that the di-
agnostic interpretation of mammograms continues to be
challenging for radiologists with a documented 20% false-
negative rate (3– 6).

The clinical significance of early breast cancer diagno-
sis and the higher than desired false-negative rate of
screening mammography have motivated the development
of computer-aided detection (CADe) systems for decision
support. These systems typically involve a hierarchical
approach, first applying elaborate image preprocessing
steps to enhance suspicious structures in the image and

then employing morphologic and textural analysis to bet-
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ter classify these structures between true abnormalities
and false positives. Detailed reviews of image processing
techniques for mammographic image analysis and related
CADe systems can be found elsewhere (7–10). In addi-
tion, several CADe systems are already available com-
mercially for both screen film mammography and full-
field digital mammography (7). Although their true clini-
cal impact is often debated (11–19), the scientific
community continues to work toward improving the diag-
nostic performance and clinical integration of CADe tech-
nology. Ongoing CADe research efforts focus mainly on
the reduction of false-positive computer marks as well as
improving the detection rate of breast masses.

In our earlier studies, we presented a knowledge-based
CADe system for breast mass detection in screening
mammograms (20–22). The system is interactive and is
designed to operate as a second opinion for mammo-
graphic locations that are deemed suspicious of containing
breast masses. These suspicious locations are areas that
attract the radiologist’s attention or are marked as suspi-
cious by other automated mass detection schemes. Thus,
our system is designed for location-specific interrogation
of mammograms. The interrogation relies on a database
of mass and normal examples with known ground truth.
These examples serve as the knowledge database. Basi-
cally, the system compares the query location with the
knowledge examples. The comparison is performed using
featureless, information-theoretic (IT) similarity measures
(21). Such measures are based on the concept of image
entropy (23), and they are calculated directly from the
image pixel intensity values. Although we explored vari-
ous IT measures, our IT-CADe system using either mu-
tual information (MI) or its normalized version (NMI)
was shown to be the most effective (21,22).

The original IT-CADe prototype relied on raw image
data without any preprocessing. Our present study reports
on the effect of image preprocessing on the overall diag-
nostic performance of this system. Medical image regis-
tration studies using mutual information suggest that min-
imal preprocessing often improves image registration per-
formance (24). Consequently, in this study, we explored
the effect of various preprocessing image filters on our
own IT-CADe system. The selection of each preprocess-
ing filter targeted known limitations of the mutual infor-
mation similarity measure. The resultant performance of
the modified IT-CADe system was compared with that
previously reported without the preprocessing filtering

step. Such direct comparison is necessary to test the hy-
pothesis that image preprocessing contributes to further
improvement of the IT-CADe performance.

MATERIALS AND METHODS

Materials

Database.—The image database used in this study has
been previously described in detail (20,21). Because the
present study builds on a previously presented system, it
is essential to demonstrate any incremental improvement
using the same database. Here is a summary description
of this database.

All mammographic cases were selected from the Digi-
tal Database of Screening Mammography (DDSM) (25).
These mammograms were scanned with a Lumisys scan-
ner (Sunnyvale, CA) at 50 �m/pixel and a bit depth of
12. There were 583 mammograms in total; 296 containing
biopsy-proven malignant masses, 185 containing benign
masses proven either by biopsy or additional imaging, and
82 normal mammograms. The available database was di-
vided into two sets. One set contained 483 DDSM cases
(256 cancer, 145 benign, 62 normal) and served as the
knowledge database. The second set contained the remaining
100 cases (40 malignant, 40 benign, 20 normal) and served
as the test database. Note that the test database was reserved
from the beginning of our IT-CADe research efforts (before
this study) to serve for final validation. The selection criteria
were such that the test database represents a balanced mix of
cases from all available DDSM/Lumisys volumes. The data-
base did not contain any “benign-without-callback” cases,
because these are considered easy cases to diagnose.

From each case, a 512 � 512 pixel region of interest
(ROI) was extracted around the known location of any
true mass present in the case. The mass locations are pro-
vided in the DDSM truth files. Dataset 1 (ie, the knowl-
edge database) contained 1,820 ROIs. Of those, 489 de-
picted a malignant mass, 412 depicted a benign mass, and
919 were normal. The mass ROIs serve as the system’s
knowledge foundation of typical mass examples. The nor-
mal ROIs were initially selected from normal mammo-
graphic cases by randomly sampling the breast region.
Such normal ROIs are essential to establish a knowledge
foundation of normal breast parenchyma. Because the
normal cases were few compared to mass cases in the
DDSM/Lumisys set, normal ROIs were also extracted
from abnormal cases, but only from imaged breasts that
did not contain any physician annotations in either mam-

mographic view.
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In addition, 512 � 512 pixel ROIs were extracted
around the known mass locations in the test database.
There were 44 malignant mass ROIs and 40 benign mass
ROIs in dataset 2. In addition, 399 ROIs were extracted
around mammographic locations marked as suspicious by
a feature-based CADe system developed before in our
laboratory (26,27). Therefore, dataset 2 contained 483
ROIs in total. These ROIs served as queries to our IT-
CADe system to determine whether the system can pro-
vide effective false-positive reduction.

Overview of the IT-CADe system.—The prototype IT-
CADe system offers an evidence-based second opinion
regarding the presence of a possible mass in any mammo-
graphic location that is indicated by the CADe user. The
basic IT-CADe system combines principles from content-
based image retrieval and case-based reasoning. When an
unknown query case is presented for evaluation to the
system, the system compares the query to all known cases
stored in the knowledge database. Similar cases are re-
trieved and are used to make a prediction regarding the
query case. The retrieval process relies on IT measures.
Such measures include mutual information, joint entropy,
and Kullback-Leibler divergence (23). Generally, these
similarity measures are calculated using the image pixel
intensity values directly, not any image features. The un-
derlying assumption is that the co-occurrence of the inten-
sity values in the two images is maximized when the im-
ages match well. The IT measures use the concept of en-
tropy to measure the co-occurrence of pixel values (23).

Our previous publications (20,21,22,28) addressed is-
sues related to the composition of the knowledge data-
base, the case retrieval process, the construction of the
decision index, and the effect of the similarity metric.
Based on our previous findings, the prototype system op-
erates as follows. First, a 512 � 512 pixel ROI is ex-
tracted around the suspicious mammographic location
indicated by the CADe user or marked by another detec-
tion algorithm. The ROI serves as the query case for the
system. Then the ROI is compared to all examples (or
templates) stored in the system’s knowledge database.
Examples with similar entropy as that of the query are
quickly identified using a previously presented entropy-
based indexing scheme (22). The entropy-based indexing
scheme serves as a search mechanism to sort through the
knowledge database fast and identify the stored examples
that are more relevant to the specific query. Then detailed
pairwise comparisons are performed between the query
(Q) and each relevant knowledge example (or template

[T]). This detailed comparison is based on the NMI simi-
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larity measure (22). NMI captures the statistical depen-
dence between two images and it is always bounded be-
tween 0 and 1. A value of 1 suggests perfect match be-
tween the query case Q and the stored template T. In
contrast, a value of 0 indicates no statistical dependence
or shared information between the two cases. Some stud-
ies in image registration have shown that NMI is often
more successful and robust than MI (24,29,30). Although
our previous studies showed that both MI and NMI are
equally effective in IT-CADe (21), the bounded nature of
NMI makes it a more attractive option. Finally, a decision
index is calculated measuring how well the query case
matches on average the retrieved mass templates com-
pared to the retrieved normal templates. In a clinical set-
ting, an optimal threshold needs to be determined for the
final decision. If the query’s decision index exceeds the
threshold value, then the query mammographic location is
marked as a true mass. Otherwise, the query location is
marked as normal.

METHODS

Preprocessing filters.—To test the effect of image pre-
processing on the system performance, we applied several
different filters. These filters were selected to compensate
for potential limitations of the NMI similarity measure,
such as lower robustness in the presence of noise, lack of
spatial information, and questionable perceptual relevance.
Specifically, five different filters were investigated. Two
of them were popular denoising filters, namely the me-
dian and the adaptive Wiener filter. The third choice was
a perceptually driven Gabor filter. Finally, two texture
filters were also investigated, an entropy-based and a lo-
calized standard deviation filter. Image filtering was per-
formed using the MATLAB programming environment
(The MathWorks, Inc, Natick, MA).

(a) Median filter: Several image registrations studies
suggested that noise reduction techniques are es-
sential for more accurate MI-based image registra-
tion (24,31). We have explored the same issue for
our IT-CADe system. Specifically, we applied me-
dian filtering before the calculation of the similar-
ity measures. Median filtering is a standard noise
reduction technique. Furthermore, it is a reasonable
preprocessing step for mass detection because it
preserves the edge information of suspicious areas

while reducing noise (32). Median filters with dif-



Academic Radiology, Vol 15, No 5, May 2008 EFFECT OF IMAGE PREPROCESSING ON IT-CAD
ferent size kernels were explored (3 � 3, 5 � 5,
7 � 7, 9 � 9, 11 � 11, 15 � 15, 21 � 21 pixels)
for the task.

(b) Adaptive Wiener filter: Similar to the median filter,
the adaptive Wiener filter (33) was applied for de-
noising tailored on statistics estimated from the
local neighborhood of each image pixel. The
amount of smoothing performed by the filter de-
pends on the local image mean and variance
around the pixel of interest. The Wiener filter is a
popular linear filter, but its adaptive implementa-
tion better preserves the high-frequency parts of
the image. The same size kernel sizes were ex-
plored as with the median filter.

(c) Gabor filter: Another promising filter for image
denoising and texture analysis is the Gabor filter
(34). This type of multichannel filtering is consid-
ered an excellent preprocessing choice for image
registration (35–37) because of its perceptual rele-
vance (38). Specifically, it has been shown that
Gabor filters model the spatial frequency and ori-
entation responses of simple cells in the primary
visual cortex (39,40). The Gabor representation has
been shown to be optimal in the sense of minimiz-
ing the joint two-dimensional uncertainty in space
and frequency (41). Because the Gabor filter bank
is derived from a wavelet basis with dilations and
orientations, they are essentially band-pass filters.

A two-dimensional symmetric Gabor filter was
implemented as described in Eq 1:

f(x, y) � e��
1
2� x2

�x
2

�
y2

�y
2�� · cos(2��0(x cos� � y sin�))

(1)

where �0 is the frequency of a sinusoidal plane, �

is the orientation, and �x and �y are standard devi-
ations (or spatial spread) of the two-dimensional
Gaussian envelope (42). An octave bandwidth of 1
was used in our study because past psychophysical
studies have confirmed that an octave bandwidth of
1 is a reasonably good estimate of the human eye
when tuned to a frequency (43). Central frequen-
cies of 0.5, 1, 2, 4, 8, 16, and 32 cycles/degree
with orientations at 0°, 45°, 90°, and 135° were
used in this study.

(d) Entropy-based filtering: Because NMI is calculated
using only intensity information of corresponding

pixels between two images, it has an inherent limi-
tation. It ignores possible relationships between
neighboring pixels. Because image texture is typi-
cally captured by such relationships, NMI ignores a
potentially critical diagnostic component. To address
this limitation, we investigated an entropy-based filter
as a preprocessing step for all images. The filter re-
places the intensity value of each image pixel with a
new value that captures the local image entropy
around the pixel (44). Thus, each pixel value is re-
placed with a new value that contains localized tex-
tural information. This filter was implemented using
the entropyfilt function in the MATLAB Image Pro-
cessing Toolbox. Multiscale analysis was investigated
repeating this filtering step at several scales by vary-
ing the neighborhood size of the entropy-based filter
(3 � 3, 5 � 5, 7 � 7, 9 � 9, 11 � 11, 15 � 15,
and 21 � 21 pixels).

(e) Standard deviation filter: Similar to the entropy-
based filter, the standard deviation filter replaces
each pixel value of the grayscale image with the
local standard deviation of a neighborhood
around the pixel of interest. This preprocessing
filter was implemented using the stdfilt function
of the MATLAB Image Processing Toolbox; it
was also evaluated for variable size neighbor-
hoods as the entropy-based filter.

Figure 1 shows a representative, unprocessed ROI
depicting a malignant mass along with its filtered ver-
sions using the following filters: median, locally adap-
tive Wiener, Gabor, entropy based, and standard devia-
tion based.

Evaluation Methods
Both datasets 1 and 2 were preprocessed using the pre-

viously described filters. For each separate filter, the IT-
CADe system was tested using dataset 1 as the knowl-
edge database and dataset 2 as the test bed for the dis-
crimination of true masses from false-positive findings.
Detection performance was evaluated with receiver-oper-
ating characteristic (ROC) analysis (45). ROC curves
were fitted with the ROCKIT software, available from
Charles Metz at the University of Chicago. The overall
ROC area Az and the partial ROC area 0.90Az were used
as the reported performance indices. Although Az is the
most common performance index for binary diagnostic
tasks taking into account all possible decision thresholds,
the partial ROC area index summarizes the detection per-

formance for decision thresholds corresponding only to
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the high-sensitivity portion (�90%) (46). For our study,

0.90Az is certainly a more appropriate performance index
because any false-positive reduction scheme is expected
to perform at a high cancer detection rate for a clinically
effective cancer screening CADe system.

RESULTS

Effect of Image Filter
First, the effect of the kernel size on IT-CADe perfor-

mance was investigated carefully for the median, Wiener,
entropy-based, and standard deviation-based filters. Figure 2
shows the corresponding ROC area index Az (Fig 2a) and
partial ROC area index 0.90Az (Fig 2b) for all kernel sizes
considered. For the median filter, the 3 � 3 kernel re-
sulted in the highest ROC performance with the 5 � 5
kernel producing a slightly (yet not statistically signifi-
cantly) lower performance. As the kernel size of the me-
dian filter increased, the performance of the system
steadily decreased. This result was expected because of
the resulting oversmoothing of the images. The kernel
size of the Wiener filter had minimal impact on the sys-

Figure 1. Example region of interest (ROI) dep
cessed with the following filters: (b) 3 � 3 medi
entropy-based, and (f) 21 � 21 standard deviat
tem’s performance, at least for the size range evaluated in
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this study. Similar to the median filter, the neighborhood
size of the texture filters also affected system perfor-
mance. Performance peaked for the 9 � 9 neighborhood
size with the entropy-based filter. The improvement was
statistically significant compared to all other neighbor-
hood sizes with the exception of the 11 � 11 neighbor-
hood, where the difference was borderline significant
(two-tailed P value of .05 for the partial ROC area in-
dex). For the standard deviation filter, ROC performance
peaked for the 21 � 21 neighborhood size, but it was not
significantly better compared to the other neighborhood
sizes. Further increase of the neighborhood size resulted
in a severe decrease of the system’s performance.

Table 1 summarizes the results of this study for all
preprocessing scenarios considered and shows the perfor-
mance indices for the IT-CADe system depending on the
image preprocessing scheme. For simplicity, Table 1
shows only the system performance for each preprocess-
ing filter operating with its best performing kernel size.
As a point of reference, the table also includes the perfor-
mance of the original IT-CADe system without any image
preprocessing (“none”) and reports the specificity

a malignant mass (a) unprocessed, and pro-
) 3 � 3 adaptive Wiener, (d) Gabor, (e) 9 � 9
ased.
icting
an, (c
achieved by the system at 95% detection rate for masses.
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Table 1 highlights several interesting trends. Overall,
both texture filters resulted in a dramatic decline of the
IT-CADe diagnostic performance with respect to all per-
formance indices. The decline of the ROC area index was
significant for both the entropy-based and standard devia-
tion–based filters (two-tailed P value � .001). With re-
spect to the partial area index, the decline was borderline
significant for the standard deviation filter (two-tailed P
value of .05), but not significant for the entropy filter
(two-tailed P value of .12). These results suggest that the
texture filters investigated in this study are not appropriate
choices if they are to be used as an independent prepro-

Figure 2. Effect of the filter kernel size on the receiver-operating
characteristic (ROC) performance of the information theoretic–
computer-aided detection (IT-CADe) system with respect to the
(a) overall ROC area index and the (b) partial ROC area index for
the high-sensitivity (�90%) portion of the ROC curve.
cessing step. However, because they capture textural in-
formation, such filters have potentially incremental diag-
nostic value.

With respect to the overall ROC area index, the me-
dian filter resulted in a statistically significant improve-
ment of the diagnostic performance. The area index in-
creased from 0.78 to 0.82 (two-tailed P value of .01).
However, such improvement was not observed with re-
spect to the partial ROC area index. Actually, the partial
ROC area index declined slightly from 0.33 to 0.32 after
median filtering (two-tailed P value of .20). The Wiener
filter resulted in similar performance of the IT-CADe sys-
tem without any preprocessing (two-tailed P values of .53
and .29 for the ROC and partial ROC area indices, re-
spectively). Finally, Gabor filtering produced a notable
improvement of the partial ROC area index (from 0.33 to
0.37); however, this improvement did not reach statistical
significance (two-tailed P value of .12).

With respect to specificity at 95% mass detection rate,
Gabor filtering was the most effective. The system
achieved 34.1% specificity when including Gabor filtering
as a preprocessing step compared to 31.3% specificity
without filtering. This result represents a 9% improvement
in system specificity.

IT-CADe Fusion
Although no filter emerged as a clearly superior

choice, it is possible that a multifilter fusion approach
may be more effective. To test this possibility, we con-
structed a linear classifier that combined the predictions
of the IT-CADe systems (each operating with a different
preprocessing step) into one comprehensive decision. The
underlying hypothesis is that fusing the IT-CADe outputs
based on multiple, complementary preprocessing filters
may be superior to any one of the filters alone.

Specifically, linear classifiers were built combining the
filter-specific IT-CADe outputs. For a given query ROI,
the continuous decision indices of the filter-specific IT-
CADe systems served as inputs to the fusion classifier.
Thus, the fusion CAD system relied on stacked generali-
zation where the level 0 classifiers were the knowledge-
based, filter-specific IT-CADe systems and the level 1
combiner was a trainable linear classifier. We performed
an exhaustive search, building a linear classifier for every
possible combination of “filters” (ie, filtered IT-CADe
outputs). With six different filters considered, there were
57 possible combinations (ie, 15 combinations merging
the IT-CADe outputs of only two different filters at a
time, 20 combinations merging three different filters, 15

combinations merging four different filters, six combina-
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tions merging five filters, and one combination including
all six filtered IT-CADe outputs). Thus, 57 different linear
classifiers were built. These classifiers were evaluated
using leave-one out sampling on dataset 2 because the
clinical focus was on differentiating masses from false
positives. Furthermore, in our previous experiments we
observed that leave one out is an appropriate data-han-
dling scheme when stacking knowledge-based IT-CADe
systems with a simple combiner such as a linear classifier
(47). These experiments were performed using the R soft-
ware package (48,49).

Table 2 highlights some of the most interesting trends
of the IT-CADe fusion experiment. Specifically, the table
shows which combination produced the best performing
fusion classifier when the number of input filters is re-
stricted (eg, only two filters, only three filters). Overall,
the fusion experiment showed that the synergistic ap-
proach of the linear classifiers using information from
IT-CADe with different preprocessing schemes resulted in
statistically significantly better performance compared to

Table 1
Effect of Image Filtering as a Preprocessing
System for the Detection of Masses in Scree

Preprocessing Filter Az (� �)

None 0.778 � 0.025
Median (3 � 3) 0.816 � 0.025
Wiener (3 � 3) 0.785 � 0.026
Gabor 0.783 � 0.024
Entropy (9 � 9) 0.706 � 0.028
Standard deviation (21 � 21) 0.667 � 0.028

IT-CADe: information theoretic–computer-aid

Table 2
Performance of Linear Discriminant Analysis
Filter-Specific IT-CADe Outputs

LDA Az (� �)

2 filters: (M, W) 0.884 � 0.019
3 filters: (M, W, STD) 0.893 � 0.018
4 filters: (M, W, H, STD) 0.896 � 0.017
5 filters: (M, W, G, STD, UN) 0.897 � 0.018
ALL: (M, W, G, H, STD, UN) 0.898 � 0.018

LDA: linear discriminant analysis; IT-CADe: in
unprocessed; M: median; W: adaptive Wiener; G
tion based.

Different LDA models were built for each pos
shows which combinations emerged as the sup
lowed in the LDA model.
the original IT-CADe system with respect to all perfor-
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mance metrics. Fusing all six filtering schemes produced
the best results (Az � 0.90, 0.90Az � 0.55). At a fixed 95%
mass sensitivity rate, 76 additional false-positive queries
were correctly identified by the fusion system. This repre-
sents a 61% specificity improvement over the original IT-
CADe system. However, combining the decisions of the
IT-CADe system operating with only two preprocessing
steps, namely the median and the adaptive Wiener filters,
produced similar results (Az � 0.88, 0.90Az � 0.52, and
57.8% specificity improvement at a fixed 95% mass detec-
tion rate). This performance was not significantly lower than
the best reported one using all six filters. Compared to the
best performing median filter, the two-filter fusion linear
discriminant analysis increased specificity from 31.3% to
49.4%. Similarly, a 44.9% specificity improvement was ob-
served over the system operating with the best performing
Gabor filter (specificity increased from 34.1% to 49.4%).
Although several combinations of three, four, and five filters
resulted in incremental performance improvements (shown
in Table 2), none of these was statistically significant com-

on the Performance of the IT-CADe
Mammograms

0.90Az (� �) Specificity at 95% Sensitivity

.326 � 0.055 31.3% (125/399)

.320 � 0.065 29.6% (118/399)

.323 � 0.057 31.1% (124/399)

.368 � 0.053 34.1% (136/399)

.268 � 0.046 27.6% (110/399)

.236 � 0.042 23.8% (95/399)

tection.

ision Models that Combine the

0.90Az (� �) Specificity at 95% Sensitivity

.517 � 0.067 49.4% (197/399)

.523 � 0.070 47.4% (189/399)

.535 � 0.067 48.3% (193/399)

.549 � 0.067 49.9% (199/399)

.548 � 0.068 50.4% (201/399)

tion theoretic–computer-aided detection; UN:
bor; H: entropy-based; STD: standard devia-

combination of filtering options. The table
ones depending on the number of inputs al-
Step
ning

0
0
0
0
0
0
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0
0
0
0
0

forma
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sible
erior
pared to combining just the median and Wiener filters. This
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result suggests that the added complexity of additional filters
is not justified.

DISCUSSION

The general concept of building and mining knowledge
databases of imaging data in radiology is becoming in-
creasingly relevant. In the digital era, it is important to
capitalize on the growing number and variety of mammo-
grams that are continuously acquired and stored. Our in-
teractive, knowledge-based CADe system for location-
specific interrogation of mammograms has such capacity
without needing additional training of its decision-making
module every time a new case is added to its knowledge
database. Furthermore, our featureless approach for case
similarity assessment eliminates any concerns regarding
careful selection, extraction, and merging of image fea-
tures for decision making. This is a particularly attractive
property that facilitates easier knowledge transfer across
databases (eg, mammograms acquired with different sys-
tems or digitized with different digitizers), as we have
shown in previous studies (28,50).

In this study, we presented a range of image filtering
techniques as potential preprocessing steps in an attempt
to improve the performance of our IT-CADe system. The
filters were selected so that they complemented the simi-
larity metric in our IT-CADe system. Because normalized
mutual information is sensitive to image noise, a smooth-
ing median filter and an adaptive Wiener filter were con-
sidered as promising preprocessing steps. In addition, two
texture-based filters were considered. Because NMI does
not capture localized textural information, an entropy-
based filter and a standard deviation-based filter were ap-
plied to quantify the local texture in the image. The final
choice was a Gabor filter optimized according to the hu-
man perception system. This comparative study focused
on the false-positive reduction task because such task still
represents one of the major challenges of existing CADe
systems in mammography.

Our study was restricted to a small but diverse group
of preprocessing filters. Overall, no particular filter
emerged as the superior choice. Although median filtering
resulted in significantly better performance with respect to
the overall ROC area, Gabor filtering demonstrated supe-
rior performance for the clinically critical, high-sensitivity
portion of the ROC curve. However, the improvement did
not reach statistical significance. The entropy-based and

standard deviation–based texture filters were the only
ones that deteriorated the diagnostic performance of the
IT-CADe system. It should be noted that other texture-
based filters that are better tailored to the clinical task
could be potentially more successful. Finally, integrating
all filters with a linear classifier achieved dramatic im-
provement with respect to all performance indices. These
results highlight the significance of image preprocessing
for our IT CADe system, especially when a fusion ap-
proach is considered in which the filters are complemen-
tary in nature.

In conclusion, image preprocessing through carefully
tailored filters should be investigated as a promising strat-
egy to improve substantially upon the performance of our
CADe system. Moreover, advanced fusion strategies that
incorporate CADe decisions based on complementary pre-
processing steps hold the most promise for providing
even further improvements.
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The purpose of this study was to evaluate image similarity measures employed in an information-
theoretic computer-assisted detection �IT-CAD� scheme. The scheme was developed for content-
based retrieval and detection of masses in screening mammograms. The study is aimed toward an
interactive clinical paradigm where physicians query the proposed IT-CAD scheme on mammo-
graphic locations that are either visually suspicious or indicated as suspicious by other cuing CAD
systems. The IT-CAD scheme provides an evidence-based, second opinion for query mammo-
graphic locations using a knowledge database of mass and normal cases. In this study, eight
entropy-based similarity measures were compared with respect to retrieval precision and detection
accuracy using a database of 1820 mammographic regions of interest. The IT-CAD scheme was
then validated on a separate database for false positive reduction of progressively more challenging
visual cues generated by an existing, in-house mass detection system. The study showed that the
image similarity measures fall into one of two categories; one category is better suited to the
retrieval of semantically similar cases while the second is more effective with knowledge-based
decisions regarding the presence of a true mass in the query location. In addition, the IT-CAD
scheme yielded a substantial reduction in false-positive detections while maintaining high detection
rate for malignant masses. © 2007 American Association of Physicists in Medicine.
�DOI: 10.1118/1.2401667�
I. INTRODUCTION

There is conflicting evidence regarding the clinical impact of
computer-assisted detection �CAD� systems for the diagnos-
tic interpretation of screening mammograms. For the most
part, retrospective studies suggest that CAD technology has a
positive impact on early breast cancer detection �e.g., Refs.
1–5�. There are, however, several retrospective6–8 and
prospective9–13 studies that produced contradictory conclu-
sions. Although it is recognized that more prospective studies
are needed on the topic, it is well known that radiologists
often dismiss correct CAD cues. The radiologists’ reluctance
to trust CAD is mainly attributed to the higher than desired
false positive rate.11 The above observations are particularly
true for the detection of masses, a far more challenging task
than the detection of calcifications.

While the true clinical benefit of CAD is still debated,14

CAD research continues in an effort to improve diagnostic
performance and clinical integration.15 For example, the cur-
rently used “black-box” CAD paradigm is rather limited. A
CAD system that is more interactive and capable of justify-
ing the visual cues it provides may help radiologists’ cogni-
tive process more effectively. Moreover, as clinical image
libraries grow rapidly in Radiology, contemporary CAD sys-
tems should be able to capitalize on accumulating image data

without requiring painstaking retraining or recalibration.

140 Med. Phys. 34 „1…, January 2007 0094-2405/2007/34„
Content-based image retrieval �CBIR� could facilitate the
development of a new generation of interactive CAD tech-
nology that takes advantage of the vast amounts of digital
image data generated in clinical practice. The main objective
of CBIR research is to develop a user-friendly framework
that allows users to interact with digital image libraries
effectively.16 CBIR has been identified as an important re-
search direction in Radiology to facilitate clinical decision
support for medical image interpretation.17,18

Shifting the CAD paradigm to incorporate image retrieval
capabilities is a challenging proposition. The primary task of
CBIR in the clinical arena is to help radiologists retrieve
images with similar visual content. Medical image retrieval
has traditionally been based on text describing the patient
clinical data and medical condition depicted in the patient’s
imaging studies. These textual descriptors are used as key-
words for searching the medical image library. Several re-
searchers have recognized the need for more sophisticated
image retrieval methods that capture the visual content of
images more effectively than textual descriptors. Conse-
quently, CBIR has evolved toward feature-based similarity
assessment. Images are compared and retrieved based on
low-level image features that describe the color, shape, tex-
ture, and spatial arrangement of important objects �i.e., or-
gans, tumors, etc.� identified in the medical images. Never-

theless, low-level image features are often ineffective in

1401…/140/11/$23.00 © 2007 Am. Assoc. Phys. Med.
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CBIR of single-modality images due to the subtle differences
that exist among same-domain images. This inefficiency is
known as the “semantic gap” between image features and the
visual and diagnostic content of the images as perceived by
the radiologists.17 Therefore, the challenge in creating clini-
cally effective CBIR-based CAD systems is to develop algo-
rithms that retrieve semantically and perceptually similar im-
ages to provide evidence-based decision support.

Working toward this goal, we have previously presented a
CBIR-based CAD system for the detection and diagnosis of
masses in screening mammograms.19,20 In contrast to
feature-based CBIR algorithms in mammography,21–27 our
system relies on information theoretic principles to assess
image similarity. Specifically, the system uses the popular
concept of mutual information �MI� to measure the similarity
between a query image and those stored in the knowledge
database. MI-based similarity assessment relies completely
on the statistical properties of the image histograms eliminat-
ing the image preprocessing, segmentation, and feature ex-
traction steps. Furthermore, information theoretic similarity
measures have the advantage of making no assumptions on
the underlying image distributions. Our CAD system was
evaluated initially as a knowledge-based system for the dis-
crimination of masses from normal breast parenchyma19 and
for the diagnostic characterization of masses using relevance
feedback techniques.20

Since similarity assessment is the most important compo-
nent in CBIR,28,29 the purpose of this study was to explore
several entropy-based similarity measures for region-based
analysis of mammograms. Specifically, we present a com-
parative study using the information-theoretic computer-
assisted detection �IT-CAD� scheme for three clinically ori-
ented tasks. First, an experiment was performed to determine
which similarity measure helps the IT-CAD scheme retrieve
semantically relevant mammographic regions with the high-
est precision. A second experiment was performed to deter-
mine which measure helps the IT-CAD scheme discriminate
between mass and normal mammographic regions with the
highest accuracy. Finally, a third experiment was performed
to validate the conclusions of Experiments 1 and 2 using
IT-CAD for evidence-based, false positive reduction of pro-
gressively more challenging visual cues produced by an ex-
isting second-reader CAD system.

II. MATERIALS AND METHODS

A. Information-theoretic similarity measures

Information-theoretic �dis�similarity measures are based
on the concept of entropy.30 The most commonly used en-
tropy definition is the Shannon entropy �H�:

H = − �
x

p�x�log2�p�x�� , �1�

where p�x� is the probability that an image pixel will have
the intensity value x. The image probability p�x� is typically
estimated from the image histogram, commonly using the
convention 0 log 0=0. Entropy is considered a measure of

the uncertainty or complexity in an image. The image com-
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plexity �or uncertainty� is captured by the dispersion of the
probability distribution of the image intensity levels. Images
with uniform pixel intensity distributions have high disper-
sion and therefore higher entropy. In contrast, images with
intensity distributions that depict a few large peaks have
lower dispersion and thus lower entropy.

Generally, information-theoretic similarity measures com-
pare the histograms of two images X and Y. The comparison
may focus only on corresponding histogram bins �i.e., bin-
by-bin measures� or it may incorporate information for non-
corresponding bins �i.e., cross-bin measures�. This study in-
vestigates eight information-theoretic �IT� �dis�similarity
measures that have been successfully applied in other areas
of medical imaging such as image registration, segmentation,
and feature-based image retrieval. Four of them are cross-bin
measures: �i� joint entropy, �ii� conditional entropy, �iii� mu-
tual information, and �iv� normalized mutual information.
The remaining four IT measures are typical examples of bin-
by-bin measures: �i� average Kullback-Leibler divergence,
�ii� maximum Kullback-Leibler divergence, �iii� Jensen di-
vergence and, �iv� arithmetic-geometric mean divergence.
The following is a brief description of each measure.

1. Joint entropy

Joint entropy �JOINT�H� is the entropy of the joint histo-
gram of two images X and Y.

JOINT � H = H�X,Y� = − �
x

�
y

pXY�x,y�log�pXY�x,y�� .

�2�

If two images are completely unrelated, their joint entropy
is equal to the sum of their individual entropies. On the other
hand, the more similar two images are, the lower their joint
entropy is compared to the sum of the individual entropies.
Consequently, the joint entropy is a distance measure rather
than a similarity measure. Two images with lower joint en-
tropy are considered more similar �i.e., more relevant� than
two images with higher joint entropy.

2. Conditional entropy

The conditional entropy H�X �Y� of two images X and Y
measures how much entropy �or uncertainty� is remaining
regarding image X �i.e., the query image� when we have
learned the truth regarding image Y �i.e., an image in the
knowledge database�. Similarly to joint entropy, conditional
entropy is also a dissimilarity measure. Therefore, if two
images are relevant, then the conditional entropy �or uncer-
tainty� of the query image given the known image should be
low. However, in contrast to joint entropy, conditional en-
tropy is not symmetric. In other words, H�X �Y��H�Y �X�.
The conditional �COND�H� and joint entropy of two images
X and Y are related as follows:
COND � H = H�X�Y� = H�X,Y� − H�Y� �3�
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3. Mutual information

Mutual information �MI� is the most popular IT similarity
measure, particularly for image registration.31–33 MI is simi-
lar to joint entropy but it also takes into account the indi-
vidual image entropies.

MI�X,Y� = H�X� + H�Y� − H�X,Y�

= �
x

�
y

PXY�x,y�log2
PXY�x,y�

PX�x�PY�y�
. �4�

MI is a measure of general statistical dependence �i.e., shared
information� between two images. It measures the amount of
uncertainty reduction about one image given the information
we have about the other image. MI is a true similarity mea-
sure. The more similar X and Y are, the higher their MI.
Furthermore, MI is considered a generalized extension of the
correlation coefficient because it does not make linear as-
sumptions regarding the relationship between the two im-
ages’ pixel values.34

4. Normalized mutual information

Normalized mutual information �NMI� is a normalized
version of MI ensuring that the similarity measure is
bounded between 0 and 1. Previous studies in image regis-
tration have shown that NMI is often more successful and
robust than MI �Ref. 31�.

NMI�X,Y� =
H�X� + H�Y�

H�X,Y�
. �5�

5. Relative entropy

Relative entropy or Kullback-Leibler �KL� divergence is a
distance measure between two probability distributions p�x�
and q�x�. In the scope of this study, p�x� and q�x� are the
probability distributions of the stored image p�x� and the
query image q�x�, respectively. The relative entropy is de-
fined as follows:

D�q � p� = �
x

q�x�log�q�x�/p�x�� . �6�

Relative entropy is typically used in coding theory and it
measures how inefficient on average it would be to use the
histogram of one image to code another. Generally, the
higher the relative entropy is, the more dissimilar the two
images are. Similarly to conditional entropy, KL divergence
is not a true distance measure because it is not symmetric
�i.e., D�q � p��D�p �q��. Consequently, different transforma-
tions have been utilized in CBIR to provide a symmetric KL
divergence measure �SKL�.35 In this study, we have explored
two such transformations: �i� the average KL divergence

SKL � 1 =
D�q � p� + D�p � q�

2
�7�
and �ii� the maximum KL divergence
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SKL � 2 = max�D�q � p�,D�p � q�� . �8�

SKL is a non-negative distance metric that is equal to 0 when
the two probability distributions are identical.

6. Jensen divergence

Some studies have indicated that KL divergence D�p �q�
is not numerically stable and is often sensitive to histogram
binning.36 Consequently, another divergence measure has
been proposed as a more stable alternative. The Jensen di-
vergence �JD� is an empirical modification of the KL diver-
gence that is symmetric and more robust with respect to
noise and histogram binning36

JD�p,q� = �
x
�q�x�log

2q�x�
p�x� + q�x�

+ p�x�log
2p�x�

p�x� + q�x�	 . �9�

The Jensen divergence has values bounded between 0
and 2.

7. Arithmetic-geometric mean divergence

Finally, the last similarity measure explored was the
arithmetic-geometric mean �AGM� divergence. This measure
is essentially the KL divergence between the arithmetic and
geometric means of the two image distributions p�x� and
q�x�

AGM�p,q� = �
x

p�x� + q�x�
2

log
p�x� + q�x�
2
p�x�q�x�

. �10�

All above IT measures require estimation of the marginal
probability distribution of the individual images. In addition,
some measures �i.e., JOINT�H, COND�H, MI, NMI� require
estimation of the joint probability distribution of the two
images as well. Consistent with our earlier study19 and for
reasons of computational efficiency, we applied the histo-
gram approach33 to approximate the marginal and joint prob-
ability distributions functions. The number of histogram bins
for histogram approximation was selected empirically. We
varied the number of histogram bins �i.e., 4, 8, 16, 32, 64,
128� and repeated the experiments with respect to all simi-
larity measures. As expected, the number of histogram bins
affected the observed results. For example, using only four
bins produced consistently inferior results across all similar-
ity measures. The differences among the results observed for
the remaining values of the histogram bin parameter were
not statistically significant. Overall, 64 bins were sufficient
for histogram approximation across all similarity measures
and clinical tasks. For each ROI, the mean � and standard
deviation � of the ROI pixel values were calculated. Then,
the interval ��−2� ,�+2�� was divided into 64 equal-sized
bins. Pixel values falling outside the predetermined
��−2� ,�+2�� interval were assigned to the outermost bins
when calculating the histograms. The above rules were fol-
lowed consistently for all images, similarity measures, and

experiments.
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B. Overview of the information-theoretic CAD system

Figure 1 shows a schematic representation of the image
retrieval scheme with the proposed information theoretic
framework for mass detection. The scheme is designed to
provide region-based evaluation of mammograms for a tar-
geted, evidence-based analysis of suspicious mammographic
locations.

Initially, a query mammographic location is presented to
the IT-CAD system. The system extracts a fixed size mam-
mographic region around the specific location. The query
region of interest �ROI� is compared to a knowledge data-
base of ROIs with known ground truth. Similar cases are
retrieved from the knowledge database. A decision is formu-
lated regarding the query region using the retrieved similar
cases.

There are two critical components in the IT-CAD scheme:
�i� the similarity measure, and �ii� the knowledge database.
Since the clinical focus of the IT-CAD scheme is mass de-
tection, it is reasonable to expect that the knowledge data-
base should contain a rich collection of mammographic ROIs
that depict biopsy-proven masses. Although the above re-
quirement is critical, the knowledge database also includes a
diverse set of ROIs that depict normal breast parenchyma.
Because the similarity measure is calculated using the full
ROI, it is possible that two ROIs may result in high similar-
ity mainly due to parenchymal background similarities rather
than the potential abnormalities they contain. Consequently,
the information theoretic CAD approach decides based on
both similar mass and normal cases that are stored in its
knowledge database. Specifically, the IT-CAD decision index

FIG. 1. Schematic representation of the IT-CAD content-based retrieval and
detection scheme for mammographic masses.
D�Q� is calculated as follows:
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D�Q� =
1

k
�
j=1

k

SM�Q,Mj� −
1

k
�
j=1

k

SM�Q,Nj� , �11�

where Q is the query mammographic region, SM stands for
similarity measure, and Mj and Nj are known mass and nor-
mal cases that are retrieved from the knowledge database as
most similar to the query. Note that if the query region de-
picts a mass, it is expected that the calculated decision index
should be higher than if it contains normal parenchyma. The
second term in Eq. �11� is a correction term so that high
values of D�Q� are less likely to be the result of matching
backgrounds than matching potential abnormalities.

Although our previous studies have shown promising re-
sults using mutual information as the similarity measure
�SM�, this study explores several other information-theoretic
�dis�similarity measures that share the same featureless sim-
plicity and computational efficiency with MI. Note that in
Eq. �11�, SM denotes a similarity measure. The proposed
dissimilarity measures �i.e., joint entropy, conditional en-
tropy, KL divergence, Jensen divergence, and geometric/
arithmetic mean� can be easily converted into similarity mea-
sures by taking their negative or inverse value. For this study,
we applied the negative transformation.

C. Data collection and study design

The study was based on 512�512 pixel ROIs extracted
from mammograms for the Digital Database of Screening
Mammography �DDSM�.37 The mammograms are 12 bit im-
ages digitized using the Lumisys scanner at 50 �m per pixel.
No image preprocessing �i.e., segmentation, filtering, nor-
malization, etc.� was performed on the mammograms or the
extracted ROIs.

We created two different ROI databases based on the
DDSM/Lumisys mammograms. Database 1 contained 1820
ROIs. Of those, 901 ROIs depicted a biopsy-proven mass
�489 malignant and 412 benign�. The ROIs were centered
around the physician’s annotation provided in the DDSM
truth files. The remaining ROIs were extracted from 62 nor-
mal mammograms �two ROIs per breast, per view� for a total
of 8�62=496 normal ROIs. The location of the normal
ROIs was selected randomly within the breast. There was no
overlap between the ROIs extracted from the same image. To
keep the database evenly balanced between normal and ab-
normal ROIs, an additional 424 ROIs were extracted from
abnormal DDSM/Lumisys cases, but only from breasts that
did not contain any physician annotations in either mammo-
graphic view. The selection of these cases was random.
Therefore, the final database contained 919 ROIs that were
deemed normal.

Database 2 contained ROIs extracted from 100 DDSM
cases completely different from those used to create Data-
base 1. This second database was selected to represent a
balanced mix of abnormal and normal cases from all avail-
able DDSM/Lumisys volumes. Note that the DDSM vol-
umes correspond to patient data acquired at different geo-
graphic locations. By creating a balanced mix of cases we

tried to minimize potential discrepancies due to patient popu-
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lation differences. Furthermore, within each volume an equal
number of cases were selected for each mammographic den-
sity. Of the 100 DDSM cases in Database 2, 40 cases con-
tained malignant masses, 40 cases contained benign masses,
and the remaining 20 cases were considered normal. In
DDSM a screening mammogram is considered normal if it
does not require any further “follow-up,” it does not contain
any annotated abnormalities, and the patient has a normal
screening exam at least four years later.

Database 2 was processed using a previously presented,
in-house CAD system for mass detection.38,39 The system
was used to locate suspicious locations within the images.
The CAD system is a multi-stage algorithm consisting of a
typical sequence of steps: �i� image filtration using a differ-
ence of Gaussians filter,40,41 �ii� initial localization of suspi-
cious regions detected at high sensitivity using a progressive
gray level thresholding procedure, �iii� feature extraction and
selection, and �iv� feature-based classification using Fisher’s
linear discriminant for false positive reduction of the initial
suspicious regions. The prescreening, in-house CAD system
was initially trained and optimized on a separate set of
DDSM cases, completely different from Database 2. After
training and optimization, the system was applied “as is” on
Database 2.

Specifically, the in-house, mass detection system was ap-
plied on the craniocaudal �CC� views of the 80 cases in Da-
tabase 2 that contained the annotated masses. For the 20
normal cases in Database 2, only one, randomly selected CC
view �left or right breast� was analyzed. Therefore, 100 in-
dependent images were analyzed. The automated screening
process resulted in 399 false positive �FP� detections �ap-
proximately 4 FPs/image�. In addition, depending on the
definition of true positive detection,42 the system also de-
tected 84%–92% of the true masses. However, because our
main focus is on reducing further the false positive detec-
tions, we combined the 399 FPs with all true masses anno-
tated in the 100 images anticipating future sensitivity im-
provement of our prescreening algorithm. In total, there were
483 mammographic regions in Database 2; 44 depicting a
malignant mass, 40 depicting a benign mass, and 399 depict-
ing suspicious looking yet normal breast parenchyma.

Database 1 was used in a leave-one-out manner to assess
how the various image similarity measures impact the re-
trieval precision �Experiment 1� and diagnostic accuracy
�Experiment 2� of our IT-CAD scheme. The leave-one-out
sampling scheme was implemented on a per case basis as
follows. Each ROI in Database 1 was excluded once to serve
as the query. Of the remaining 1819 ROIs, the ones extracted
from DDSM cases different than the query’s served as the
knowledge database of the IT-CAD scheme. The same pro-
cess was repeated until each ROI served as a query.

Experiment 3 aimed to validate the conclusions drawn
from experiments 1 and 2 for the clinical task of reducing the
false positive detections of prescreening CAD systems. Both
Databases 1 and 2 were used for this third experiment. Spe-
cifically, the ROIs in Database 2 served as queries for testing
the IT-CAD system while Database 1 served as the knowl-

edge database.
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D. Performance evaluation

Two different performance indices were employed in this
study depending on the operating mode of the IT-CAD sys-
tem �retrieval engine vs. detection aid�. When the system
was tested as a retrieval engine, its retrieval capabilities were
assessed using precision as the selected performance index.
Given a query image, precision �P� is the number of relevant
retrieved images �R� divided by the total number of retrieved
images �K�

Precision�P� =
Number of relevant retrieved images �R�

Total number of retrieved images �K�
.

�12�

Retrieval precision in CBIR is analogous to positive predic-
tive value in decision analysis. There are two ways to define
relevance in image retrieval; visual or semantic. For this ap-
plication, we focus on semantic relevance. A retrieved image
is considered to be relevant if it belongs to the same class
�mass or nonmass� as the query image. Since retrieval preci-
sion is dependent on the query, a CBIR system’s precision is
typically reported averaged across all queries. According to
Eq. �12�, retrieval precision is also dependent on the number
of retrieved images �K� and it is typically plotted as a func-
tion of K. In this study, we focus only on the top 1, 5, and 10
retrievals and evaluate the eight similarity measures with re-
spect to these top retrieved cases. We limited the precision
analysis to K�10 for practical reasons. In an interactive
CAD system, it is impractical to present radiologists with
more than the top ten most similar cases for visual evalua-
tion.

Receiver operating characteristic �ROC� analysis43 was
employed to assess the performance of the IT-CAD system
as a mass detection aid. The decision index calculated based
on Eq. �11� was used as the decision variable for ROC analy-
sis. Since the decision index is dependent on the number of
closest mass and normal retrievals �k�, ROC analysis was
performed for a wide range of k values. The ROC analysis
was performed using the ROCKIT software developed by
Charles Metz at the University of Chicago.

III. RESULTS

A. Experiment 1: Retrieval precision

The average retrieval precision achieved by each similar-
ity measure at the top K=1, 5, and 10 retrievals was calcu-
lated for all queries and separately for each subgroup of que-
ries �i.e., malignant masses, benign masses, and normals�.
Subgroup analysis was performed to identify possible dis-
crepancies depending on the true class of each query ROI.
Overall there were subtle changes as the number of retrievals
increased from K=1 to K=10. Thus, Fig. 2 shows results for
the top K=1 and K=5 retrievals only �Figs. 2�a� and 2�b�,
respectively�.

Figure 2 shows that the overall retrieval precision P�K�
achieved by the eight similarity measures appears to be
within the range of 47%–65%. Bin-by-bin measures demon-

strated overall higher average retrieval precision compared to
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the cross-bin measures at all three retrieval levels. In addi-
tion, there were dramatic differences depending on the type
of query. Four similarity measures �i.e., joint entropy, condi-
tional entropy, mutual information, and normalized mutual
information� achieved significantly higher precision for mass
queries rather than normal queries. In contrast, average pre-
cision was far more robust between mass and normal queries
for the remaining similarity measures �i.e., symmetric
Kullback-Leibler divergence, maximum Kullback-Leibler di-
vergence, Jensen divergence, and arithmetic-geometric mean
divergence�. However, the average retrieval precision was
consistently higher for normal queries than masses for the
second group of similarity measures. It is notable that the

average retrieval precision for malignant masses was consis-
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tently higher than that for benign masses for all similarity
measures �with the only exception for the joint entropy mea-
sure at the top K=1 retrieval�.

Note that since the normal and mass ROIs are almost
evenly balanced in Database 1, there is a 50% chance to
randomly retrieve a mass or normal template from the
knowledge database. The Wilcoxon signed rank test was per-
formed to determine if the average precision was signifi-
cantly higher than the expected �50% precision value due to
the inherent prevalence of each subgroup �i.e., 49.5% for
mass and 51.5% for normal ROIs� in the database. For all K
values, all similarity measures, and all subgroups of query
cases the observed precision was statistically significantly

FIG. 2. Average retrieval precision
P�K� for the �a� top K=1 and �b�
K=5 retrievals for all similarity mea-
sures. Precision is shown overall and
for each subgroup of query cases sepa-
rately. �JOINT�H: joint entropy,
COND�H: conditional entropy,
MI: mutual information, NMI: nor-
malized mutual information, SKL:
symmetric Kullback-Leibler diver-
gence, SKL�MAX: maximum
Kullback-Leibler divergence, JD:
Jensen divergence, AGM: arithmetic-
geometric mean divergence�.
different �p value�0.0001� than the expected �50% aver-
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age precision if retrieval were purely random. This result was
consistent for subgroups and similarity measures where the
achieved precision was significantly inferior to that expected
with random retrieval �e.g., 20% average precision P�5� for
normal ROIs using joint entropy as the similarity
measure�.

The signed rank test with Bonferroni correction for mul-
tiple comparisons was also performed to test for significant
differences in average retrieval precision among the different
similarity measures. The analysis was performed for each K
value �K=1,5 ,10� and each query subgroup �malignant, be-
nign, normal� separately at the 95% confidence level. The
consistent trend among the results was that the four dissimi-
larity measures SKL�1, SKL�2, JD, AGM provide very simi-
lar average retrieval precision for all query groups.

On the other hand, the remaining four similarity measures
�JOINT�H, COND�H, MI, NMI� provide significantly differ-
ent precision performance compared to the first group across
all subgroups and retrieval levels �K=1,5 ,10�. Indeed, non-
parametric correlation analysis confirmed that �SKL�1,
SKL�2, JD, AGM� and �JOINT�H, COND�H, MI, NMI� rep-
resent two distinct groups of measures. The similarity mea-
sures of the first group resulted in highly correlated precision
performance for all query groups �0.87���0.98�. How-
ever, the similarity measures of the second group resulted in
significantly less correlated precision performance �−0.14
���0.62� with the exception of COND�H and MI �0.65
���0.90 depending on the query group and number of top
retrievals�. Surprisingly, the mutual information and normal-
ized mutual information measures resulted in lower correla-
tion �0.56���0.84 depending on the query group and num-
ber of top retrievals�. It is noted that the differences in
precision between MI, NMI, COND�H, and JOINT�H were
often significant for both mass and normal queries at the
various retrieval levels. The above statistical analysis was
performed using the JMP Statistical Software Version 5.1
available from SAS, Cary, NC.

B. Experiment 2: Detection accuracy

The �dis�similarity measures were subsequently used in
the IT-CAD system for the discrimination of mass from nor-
mal ROIs according to the decision variable described in

TABLE I. ROC area index Az �±0.01� achieved by the IT-CAD scheme depe
normal templates considered in decision making.

k JOINT�H COND�H MI

1 0.47 0.48 0.71
5 0.48 0.50 0.78
10 0.51 0.51 0.81
50 0.59 0.57 0.87
100 0.67 0.70 0.87
300 0.85 0.85 0.86
500 0.86 0.86 0.86
700 0.87 0.87 0.87
ALL 0.86 0.86 0.87
Eq. �11�. In contrast to retrieval precision, the decision vari-
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able ignores the rank order of the retrieved cases but it takes
into consideration the actual value of the similarity measure
under consideration.

Table I shows the corresponding ROC areas achieved for
each similarity measure based on the number k of the closest
mass and normal templates retrieved from the knowledge
database. Results are shown for several k values to highlight
the general trends. For example, when k=1, the IT-CAD sys-
tem is asked to make a decision using the one mass and one
normal templates retrieved from the database as most similar
to the query. In contrast, if k=ALL, the IT-CAD system is
asked to make a decision using the whole knowledge data-
base.

Using the mutual information, normalized mutual infor-
mation, conditional entropy, and joint entropy as the similar-
ity measure, the IT-CAD system achieved its highest ROC
performance �Az=0.87±0.01�. Although not shown in Table
I, the IT-CAD performed significantly better for the detection
of malignant �Az=0.89±0.01� than benign masses �Az

=0.84±0.01�. The number of top mass and normal templates
required for optimized performance depended on the similar-
ity measure. Using mutual information, the system achieved
its highest performance using as few as the top matched 50
mass and normal templates. Conditional entropy, normalized
mutual information, and joint entropy required substantially
more matched templates. The best ROC area index achieved
by the IT-CAD scheme was significantly lower when using
the Kullback-Leibler, Jensen, and arithmetic-geometric mean
divergence measures �Az=0.77±0.01�. This performance
was optimized with approximately 50 best matched mass and
normal templates and deteriorated substantially as more in-
ferior matches were included in the decision making process.

Since emphasis is typically place on operating at a high
sensitivity level for breast cancer detection tasks, the impact
of the eight similarity measures was also evaluated with re-
spect to the partial ROC area index 0.90Az. The overall trends
remained the same. Specifically, MI, NMI, JOINT�H, and
COND�H achieved significantly higher performance for ma-
lignant masses �0.90Az=0.57±0.03� than the remaining mea-

on the similarity measure and the number of the best-matched k mass and

I SKL�1 SKL�2 AGM JD

1 0.68 0.70 0.67 0.70
9 0.73 0.75 0.74 0.75
1 0.76 0.77 0.76 0.76
5 0.77 0.77 0.77 0.77
5 0.76 0.76 0.75 0.76
6 0.73 0.73 0.73 0.73
7 0.63 0.64 0.62 0.65
7 0.60 0.61 0.60 0.62
7 0.59 0.59 0.58 0.63
nding

NM

0.7
0.7
0.8
0.8
0.8
0.8
0.8
0.8
0.8
sures �0.90Az=0.31±0.03�.
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C. Experiment 3: IT-CAD for false positive reduction

Finally, the IT-CAD scheme was validated for discrimi-
nating true masses from false positive mammographic re-
gions. Figure 3 shows the overall ROC and partial ROC area
indices achieved depending on the similarity measure. As the
figure shows, the best performance of the IT-CAD scheme
�Az=0.81±0.02� is significantly lower on Database 2 than
what was previously observed on Database 1 �Az

=0.87±0.01�. The performance deterioration was expected
because Database 2 represents a far more challenging detec-
tion task �mass vs. suspicious-looking normal ROIs� than
Database 1 �mass vs. randomly chosen normal ROIs�. How-
ever, the same overall trends prevailed. The same two groups
of similarity measures emerged with distinctly different de-
tection performance.

The IT-CAD detection performance on Database 2 was
analyzed in more detail with NMI as the similarity measure.
NMI is a more attractive choice than MI due to its bounded
nature. It always ranges between 0 and 1 regardless of any
possible preprocessing done on the ROIs. Three operating
decision thresholds were selected using the partial ROC
curves acquired in Database 1. The thresholds corresponded
to three clinically relevant operating points: �a� 95% sensi-
tivity, �b� 90% sensitivity, and �c� 85% sensitivity for malig-
nant masses. Note that the decision thresholds for these three
operating points were determined using Database 1 exclu-
sively. Database 2 was used purely for testing.

Overall, the IT-CAD scheme had very robust detection
performance in Database 2 when operating with the above
decision thresholds. Operating at the desired 95% sensitivity
decision threshold, the IT-CAD system detected 42/44 ma-
lignant masses present in Database 2 �95.7% sensitivity�. At
the 90% and 85% sensitivity operating thresholds, the
scheme detected 40/44 malignant masses �90.9% sensitiv-

ity�.
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The contribution of the IT-CAD system for false positive
reduction rate was also assessed at the same three operating
points. Table II shows the false positive reduction rate for all
false positives and for progressively more challenging ones;
those remaining when the system operates at 3 FPs/image, 2
FPs/image, 1 FP/image, and 0.4 FP/image, respectively �at
the expense of lower mass detection rate obviously�. The
IT-CAD scheme can effectively reduce about 50% of the
false positive cues while detecting 90% of the malignant
masses. Although the impact of the IT-CAD scheme deterio-
rates as the false positive cues become progressively more
challenging, the scheme can still eliminate up to 17.5% of
the false positive cues generated by the prescreening system
that operates at a low 0.4 FP/image �while detecting 85% of
malignant masses�.

The results regarding retrieval precision in Database 2
were also consistent with what was observed in Database 1.
The bin-by-bin similarity measures �SKL�1, SKL�2, JD,
AGM� provided far more robust retrieval precision among
all queries than the cross-bin similarity measures �JOINT�H,
COND�H, MI, NMI�. It is noted however, that the average
retrieval precision for the false positive ROIs was consis-
tently lower than that achieved for randomly chosen normal
ROIs in Database 1 using the bin-by-bin similarity measures
�0.60 vs 0.69�.

IV. DISCUSSION

Assessment of image similarity is a critical step for the
retrieval and diagnostic interpretation of medical images
based on their content. The task involves two important de-
cisions: �i� how to represent the image, and �ii� how to
choose the most effective similarity measure for the specific
image representation space and the particular medical task at

FIG. 3. Overall ROC area �±0.02� and
partial ROC area �±0.04� indices
achieved by the IT-CAD scheme for
discrimination of true masses from
suspicious yet normal ROIs depending
on the image similarity measure.
hand. Typically, these decisions are made empirically using a
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labeled database. The size and comprehensiveness of the da-
tabase usually determine how well the decisions generalize
to new databases.

In the present study we investigated the retrieval perfor-
mance and mass detection accuracy of eight information-
theoretic �IT� image similarity measures for region-based
analysis of mammograms. In contrast to feature-based simi-
larity assessment techniques, the IT measures operate with
image histograms without requiring image feature extraction.
Thus, the image content is represented in terms of pixel in-
tensity histograms. The IT similarity measures essentially
compare the region-based histograms of two mammograms
to determine how relevant they are. Specifically, this study
focused on two groups of information theoretic measures: �i�
bin-by-bin measures that compare only the contents of cor-
responding histogram bins �i.e., average KL divergence,
maximum KL divergence, Jensen divergence, arithmetic-
geometric mean divergence� and �ii� cross-bin measures �i.e.,
joint entropy, conditional entropy, mutual information, nor-
malized mutual information� that incorporate the compari-
sons of the contents of noncorresponding bins.

The proposed image similarity measures were evaluated
in the context of an interactive CAD system that is designed
to provide evidence-based decisions regarding the presence
of a malignant mass in mammographic locations that serve
as queries for the system. These measures were evaluated in
two different capacities: �i� for retrieval of diagnostically
similar cases and for �ii� knowledge-based mass detection.
Experiments were performed using two independent data-
bases. The first database contained mammographic regions
that depicted either a mass or normal breast parenchyma.
This database was used for empirical comparison of the simi-
larity measures based on a leave-one-case-out sampling
scheme. The main conclusions drawn from using Database 1
were further validated on Database 2. The second database
served as a clinically more challenging test bed because the
nonmass mammographic regions it contained were already
cued as highly suspicious for containing a mass by an in-
house CAD system. Therefore, the additional validation ex-

TABLE II. False positive reduction rate achieved by the IT-CAD scheme str
malignant mass sensitivity �true positive fraction �TPF�� operating points. T
measure.

DIFFICULTY LEVEL
OF FP CUES

�No. of FPs/image� TPF=95%

ALL FPs �4 FPs/img� 29.8% �2.80�
75% most challenging FPs

�3 FPs/img�
21.0% �2.37�

50% most challenging FPs
�2 FPs/img�

14.0% �1.72�

25% most challenging FPs
�1 FPs/img�

10% �0.90�

10% most challenging FPs
�0.4 FPs/img�

5% �0.38�
periment aimed to evaluate to what extent the information-
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theoretic CAD analysis could improve upon the performance
of existing CAD technology by providing evidence-based
analysis of suspicious regions.

Our study clearly demonstrated two strong trends. First,
bin-by-bin measures based only on the distance of the mar-
ginal histograms were more successful at achieving higher
and more balanced average retrieval precision of cases with
similar semantic content. High precision in the first few re-
trievals is critical for content-based image retrieval systems
designed to display the top matches for visual evaluation by
the CBIR user. On the other hand, cross-bin similarity mea-
sures that incorporate the joint histogram information were
more successful for knowledge-based discrimination of
masses from normal mammographic regions.

Based on the above observations, it seems reasonable to
consider the ratio of retrieved masses over the total number
of retrieved cases as a potential decision variable for the
IT-CAD system. Basically, when a query case is presented
for evaluation, the IT-CAD scheme retrieves the top K most
similar cases. The prevalence of masses in the top retrievals
is treated as a predictive variable for the presence of mass in
the query image. This predictive variable is in essence simi-
lar to the odds ratio. If the query depicts a mass, then the
above prevalence should be larger than if the query depicts
normal breast parenchyma. Although not reported in this
study, we explored this possibility with all similarity mea-
sures. As expected, the bin-by-bin similarity measures helped
the IT-CAD scheme achieve a higher ROC area index than
the cross-bin measures �0.74±0.01 vs. 0.69±0.01� for a low
number of retrievals �K�30�. As more retrieved cases were
considered, the ROC performance evened out between both
groups of similarity measures. However, the ROC area index
never exceeded the one achieved using the knowledge-based
decision index �Eq. �11�� proposed in our study.

Finally, our study showed that the IT-CAD system can be
effectively utilized as an add-on to existing detection
schemes for false-positive reduction. Since the information-
theoretic system follows a featureless-based image analysis,

according to the difficulty level of the cases. Results are shown for three
T-CAD scheme employed normalized mutual information as the similarity

% FP REDUCTION
�Remaining average No. of FPs/image�

TPF=90% TPF=85%

45.9% �2.16� 52.0% �1.91�
38.0% �1.86� 45.7% �1.63�

29.5% �1.41� 36.0% �1.28�

18.0% �0.82� 25.0% �0.75�

7.5% �0.37� 17.5% �0.33�
atified
he I
it appears to complement feature-based CAD schemes. Spe-
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cifically, the IT-CAD system safely eliminated up to 17.5%
of the most challenging false positive cues �those generated
by prescreening the mammograms with a system that gener-
ates 0.4 FP/image� while still detecting 85% of the malignant
masses. On a side note, the detection rate achieved for the
benign masses was 90% �36/40�.

To summarize, our study represents a critical step toward
an interactive CAD system able to operate as an effective
content-based image retrieval and knowledge-based mass de-
tection system. The comparative analysis demonstrated that
the choice of the similarity measure depends on the clinical
task �retrieval vs. detection�. No particular similarity mea-
sure emerges as the optimal choice for both tasks. While MI
and NMI appear to be excellent choices for knowledge-based
mass detection, they fail to provide robust retrieval precision
across the two query classes for the top retrievals. Therefore,
these measures are not suitable for CAD users who would
like to view the top most relevant matches. In contrast, the
bin-by-bin similarity measures such as Jensen divergence
and Kullback-Leibler divergence achieved overall higher and
more robust retrieval precision. However, these measures
failed to reach the detection accuracy achieved by the cross-
bin similarity measures. An interesting observation was that
regarding retrieval precision, the cross-bin measures resulted
in substantially lower pairwise correlation than the bin-by-
bin measures. This finding suggests that MI, NMI, JOINT�H,
and COND�H are good candidates for a possible fusion re-
trieval strategy. In fact, the newest trends in content-based
image retrieval suggest that composite similarity measures
may be more effective than single similarity measures. Our
study certainly points toward that direction. For example, a
composite strategy where a bin-by-bin similarity measure is
used for initial retrieval of semantically similar cases while a
cross-bin similarity measure is subsequently used for
knowledge-based analysis of the retrieved cases appears to
be a promising strategy to achieve simultaneously high re-
trieval precision and detection accuracy. We are currently
investigating this idea.

One of the limitations of the present study design is that it
assessed retrieval precision based on semantic, not visual
content. This aspect is important for interactive CBIR-based
CAD systems. It is possible that cross-bin measures may be
more effective at capturing visual content than bin-by-bin
measures. We plan to investigate this possibility in the future.
In addition, we will investigate how beneficial the system is
with mammographic regions that raise visual suspicion. The
present study focused only on image locations marked as
suspicious by another CAD algorithm. Analyzing image lo-
cations that are marked as suspicious by radiologists will
determine the role of the IT-CAD system for reducing the
interpretation, not perceptual, error associated with the diag-
nostic interpretation of mammograms.

From a theoretical point of view, the inherent limitation of
the information-theoretic measures evaluated in this study is
that they focus on the global histograms representation.
Therefore, the localized spatial relationships among the im-

age pixels are lost. This limitation has been addressed before
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in the context of image registration. It has been proposed that
taking into account the neighborhood of regions of corre-
sponding image pixels may be a more effective strategy.44,45

The computational complexity and less dramatic than antici-
pated improvements of this approach have led researchers to
seek simpler surrogate approaches. For example, Pluim,
Maintz, and Ueirgever proposed multiplying the mutual in-
formation with an additional term that incorporates the local
gradients of the two images in comparison.46 Certainly ad-
vances made toward this direction in image registration may
have significant implications for our CAD application as
well.

In conclusion, this study represents a comprehensive step
toward a framework of entropy-based, image similarity as-
sessment for retrieval of diagnostically relevant images to
support interactive, evidence-based diagnostic interpretation
of mammograms.
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We have previously presented a knowledge-based computer-assisted detection �KB-CADe� system
for the detection of mammographic masses. The system is designed to compare a query mammo-
graphic region with mammographic templates of known ground truth. The templates are stored in
an adaptive knowledge database. Image similarity is assessed with information theoretic measures
�e.g., mutual information� derived directly from the image histograms. A previous study suggested
that the diagnostic performance of the system steadily improves as the knowledge database is
initially enriched with more templates. However, as the database increases in size, an exhaustive
comparison of the query case with each stored template becomes computationally burdensome.
Furthermore, blind storing of new templates may result in redundancies that do not necessarily
improve diagnostic performance. To address these concerns we investigated an entropy-based in-
dexing scheme for improving the speed of analysis and for satisfying database storage restrictions
without compromising the overall diagnostic performance of our KB-CADe system. The indexing
scheme was evaluated on two different datasets as �i� a search mechanism to sort through the
knowledge database, and �ii� a selection mechanism to build a smaller, concise knowledge database
that is easier to maintain but still effective. There were two important findings in the study. First,
entropy-based indexing is an effective strategy to identify fast a subset of templates that are most
relevant to a given query. Only this subset could be analyzed in more detail using mutual informa-
tion for optimized decision making regarding the query. Second, a selective entropy-based deposit
strategy may be preferable where only high entropy cases are maintained in the knowledge data-
base. Overall, the proposed entropy-based indexing scheme was shown to reduce the computational
cost of our KB-CADe system by 55% to 80% while maintaining the system’s diagnostic
performance. © 2007 American Association of Physicists in Medicine. �DOI: 10.1118/1.2751075�
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I. INTRODUCTION

The development and clinical application of computer-
assisted detection �CADe� technology in mammography is a
mature field of research with numerous published studies.
Sampat et al. recently presented a review on the topic.1 In
addition, several commercial CADe products are available
and in daily use. Nevertheless, the current performance of
CADe is less than desired, especially with respect to the
detection rate of breast masses as well as the CADe speci-
ficity. For example, the reported mass sensitivity of commer-
cial CADe systems varies between 65% and 90% with 0.5
false positive detections per image.2–4 The false positive rate
is considered the main reason clinicians often distrust CADe
aids. In the early development phase of this technology, it
was assumed that the radiologists would be able to differen-
tiate easily between visual cues that correspond to true ab-
normalities rather than false alarms. However, later studies

5,6
showed that this assumption is not necessarily true. Rec-
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ognizing CADe false alarms proved to be a far more chal-
lenging task, heavily dependent on each radiologist’s experi-
ence and attitude toward computer aids. Therefore, it is not
surprising that several studies measuring the true clinical im-
pact of CADe reported contradictory findings.7–15 Research-
ers continue to improve upon CADe technology by address-
ing its current limitations. The most recent trends of CADe
research include techniques that rely on the fusion of diverse
detection schemes,16 techniques that capitalize on the com-
bination of mammographic views,17–20 as well as tech-
niques that address the human-computer communication
aspects.21–23

The majority of existing CADe technology employs rule-
based systems and artificial neural networks to make the final
decision regarding the presence or absence of an abnormal-
ity. Recently knowledge-based �KB� systems were intro-
duced as a possible alternative.24,25 KB systems are designed

to provide evidence-based decision support by comparing an
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unknown query case with known cases stored in a knowl-
edge database. The main advantage of KB-CADe systems is
their ability to capitalize on accumulating image data without
requiring painstaking retraining or recalibration. Therefore,
KB-CADe systems are inherently adaptive and new clinical
cases can be continuously deposited in the knowledge data-
base without interfering with the system’s operation. Unfor-
tunately, the clinical utilization of KB-CADe systems in
mammography can be rather challenging due to the compu-
tational demands of maintaining and querying a continuously
growing databank of mammograms.

In the past, we presented our own KB-CADe system for
the detection25 and diagnosis26 of masses in screening mam-
mograms, as well as its clinical application for further reduc-
tion of false positives generated by another CADe scheme.27

Our system utilizes information-theoretic similarity measures
to assess the relevance of a query case with those stored in its
knowledge database. These similarity measures are based on
the concept of image entropy as defined in information
theory.28 More importantly, the information-theoretic similar-
ity measures are computed directly from the images without
image preprocessing, mass segmentation, or feature extrac-
tion analysis. Although we have explored various entropy-
based similarity measures, our latest study confirmed that by
far the most effective measure is the mutual information and
its normalized version.27 Mutual information �MI� is a statis-
tical measure of the amount of information redundancy be-
tween two images.28 However, mutual information is com-
putationally demanding. Blindly comparing the query case
with every case stored in the knowledge database is a com-
putationally expensive proposition, and it becomes impracti-
cal as more cases are deposited in the knowledge database.

There are two major aims in the study. They are both
designed to determine whether we can incorporate an index-
ing strategy to improve the efficiency of the KB-CADe sys-
tem without compromising its diagnostic performance. Our
first aim is to apply the indexing strategy for searching ef-
fectively the knowledge database. Ideally, instead of compar-
ing the query to all mammographic cases stored in the
knowledge database, we would like to quickly identify a sub-
set of cases that are potentially the most relevant cases to the
specific query. A detailed analysis that involves mutual infor-
mation could be restricted only to this subset. Our second
aim is to use the indexing strategy as a selection mechanism
to discard superfluous cases and build a concise knowledge
database that contains only the most globally informative
mammographic cases that are useful for a wide range of
queries. Achieving both aims will lead to an intelligent KB-
CADe system that balances diagnostic performance, compu-
tational speed, and database storage efficiency.

The paper is organized as follows. In subsection II A we
provide an overview of our KB-CADe system; its fundamen-
tal components and general philosophy. Subsection II B de-
scribes the proposed entropy-based indexing modification to
the system to facilitate faster analysis without compromising
the system’s overall diagnostic performance. Subsection II C
describes the datasets involved in the study while subsection

II D outlines the overall study design. Results are presented
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in Section III depending on the underlying aim. A summari-
zation of the study findings, the possible implications for
development of clinical knowledge-based systems in radiol-
ogy, and future extensions of this work are discussed in the
final section.

II. MATERIALS AND METHODS

A. The KB-CADe system: An overview

The major steps of our KB-CADe system have been de-
scribed in detail before.25,27 They are also shown as a block
diagram in Fig. 1. The system is designed to provide an
evidence-based second opinion for any mammographic loca-
tion indicated by either a radiologist or an automated pre-
screening algorithm. A fixed size region of interest �ROI� is
extracted around the indicated mammographic location.
Then, the ROI is compared with a large knowledge database
of mammographic templates. These templates are essentially
mass and normal ROIs extracted from mammograms with
known ground truth. The comparison between the query ROI
Q and each template T stored in the knowledge database is
based on the mutual information �MI�. The MI is calculated
as follows:

MI�Q,T� = �
q

�
t

PQT�q,t�log2
PQT�q,t�

PQ�q�PT�t�
, �1�

where PQT�q , t� is the joint probability density function of
the two images based on their corresponding pixel values.
PQ�q� and PT�t� are the marginal probability density func-
tions. The above probability density functions are estimated
from the image histograms.29

The stored templates are rank ordered according to their
mutual information with the query case. Templates with
higher MI are considered more similar to the query than
templates with lower MI. The final decision regarding the

FIG. 1. Schematic of the KB-CADe system. The analysis is performed on a
512�512 pixel region extracted around a mammographic location that is
recommended for evaluation by either a radiologist or an automated detec-
tion algorithm.
query case is based on how similar the query is to the mass
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templates versus the normal templates retrieved from the
knowledge database. Specifically, the decision index D�Q� is
expressed as

D�Q� =
1

k
�
j=1

k

MI�Q,Mj� −
1

k
�
j=1

k

MI�Q,Nj� , �2�

where Mj and Nj �1� j�k� are mass and normal templates
that are retrieved from the knowledge database as the most
similar to the query. Theoretically, as the decision index in-
creases, the probability that the query case depicts a true
mass should increase as well.

Our previous studies25,27 showed that as the number k of
retrieved templates increases, so does the diagnostic accu-
racy of the system. After a certain number has been retrieved,
the diagnostic performance of the system plateaus. Thus, in-
cluding more templates in the calculation of the decision
index has no beneficial or detrimental effect. The implication
of this finding is that essentially the KB-CADe system is
equally effective by skipping the rank-ordering step and us-
ing all stored templates for the calculation of the decision
index.

Note, however, that regardless of the minimum number of
retrieved templates required for optimized performance, the
computational complexity of the KB-CADe system remains
essentially the same. The similarity is measured based on
mutual information. Therefore, given a query ROI, the mu-
tual information between the query and each stored template
needs to be calculated first. Then, the stored templates can be
rank ordered so that the k closest mass and the k closest
normal templates are identified to derive the decision index.
Although only those 2k templates are required for optimized
decision making, the system still needs to perform as many
MI calculations as the number of templates stored in the
knowledge database. This is precisely the reason why includ-
ing all available knowledge templates in the calculation of
the decision index is a desirable alternative. The system’s
computational complexity remains the same, yet there is no
need for careful optimization of the parameter k.

B. Entropy-based indexing

The construction of the KB-CADe decision �shown in Eq.
�2�� requires that, given a query case Q, all MI�Q ,Ti� calcu-
lations are executed and the stored templates Ti are rank
ordered according to their similarity with the query. Theo-
retically, the effectiveness of KB decision systems depends
on the comprehensiveness of the knowledge database. As
new and more diverse templates are stored in the database,
KB decisions tend to become more accurate. We have ob-
served the same in a preliminary study performed with our
own KB-CADe system.30 In contrast, as the knowledge da-
tabase increases in size, the computational efficiency of the
system declines since the search and rank-ordering steps take
a substantially longer time. Therefore, the exhaustive search
for similar templates becomes impractical, compromising the

system’s ability to provide real time second opinions. This is
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a serious limitation, particularly for our system, because mu-
tual information is a computationally demanding similarity
measure.

We propose an entropy-based indexing scheme to address
this limitation. The indexing scheme operates as follows. In-
stead of comparing the query case with the whole knowledge
database, we restrict the comparisons to those stored tem-
plates that share the same level of image complexity as the
query case. The image complexity is measured using image
entropy �H�, a measure of randomness of the gray level dis-
tribution in the image:

H = − �
x

p�x�log2�p�x�� , �3�

where the probability p�x� that an image pixel will have the
intensity value x is estimated from the image histogram. Al-
though other indices could be employed for the same pur-
pose, entropy is a very attractive and logical choice for our
own KB-CADe system. Not only the template entropies can
be easily calculated, stored, and rank ordered in the knowl-
edge database, but also measuring the query’s entropy is al-
ready a necessary step for the calculation of the MI similarity
measure. We will elaborate on this point.

According to information theory, MI measures how much
the uncertainty �or entropy� of the query case is reduced if
we have prior knowledge about the template.28 Thus, MI is
the conditional entropy of the query case given the template:

MI�Q,T� = H�Q�T� = H�Q� + H�T� − H�Q,T� . �4�

If the query and the template are independent, then knowing
the template does not really help draw any conclusions about
the query. Their mutual information is 0, and therefore the
uncertainty about the query remains unchanged. If, on the
other hand, the query is identical to the template, then know-
ing the template provides complete knowledge about the
query. In this case, their mutual information is maximized,
and the uncertainty of the query given prior knowledge of
the template is reduced to 0.

Integrating the entropy-based indexing scheme in the ex-
isting KB-CADe system does not require any major addi-
tional calculations. Essentially, the query entropy H�Q� is
already part of the MI calculations that are necessary for
decision making �as shown in Eq. �4��. Furthermore, the tem-
plate entropy H�T� can be calculated offline and stored as
soon as each template is deposited in the database. Figure 2
illustrates the block diagram of the KB-CADe system en-
hanced with the entropy-based indexing scheme.

For this study, a nearest-neighbor clustering implementa-
tion of the entropy-based indexing scheme was applied to
identify the intermediate set of “most relevant” templates.
Given a query case, only a fixed number K of mass and
normal templates are retrieved for further analysis. The re-
trieved templates are the ones that are closest to the query in
terms of their individual entropies. A separate search is per-
formed among the mass and normal templates to retrieve an
equal number �K /2� of mass and normal templates for a total

of K retrievals. The nearest-neighbor implementation is at-
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tractive because the computational cost per query is fixed for
the specific computer configuration that runs the KB-CADe
system.

C. Datasets

The study was performed using two datasets of different
difficulty level. The datasets have been described in a previ-
ous paper.27 We used the same datasets to facilitate a detailed
comparison of the results and show the progression of this
research. Both datasets included 512�512 pixel ROIs ex-
tracted from mammographic cases from the Digital Database
of Screening Mammography �DDSM�.31 The mammograms
were selected from the cancer, benign, and normal DDSM
volumes digitized using the Lumisys scanner at 50 �m per
pixel. The abnormal DDSM volumes included cases that re-
quired biopsy or additional diagnostic studies to establish the
ground truth. Therefore, our datasets did not include any
“benign-without-callback” cases since radiologists would not
really request a second opinion on such less challenging
group of cases.

The first dataset contained 1,820 ROIs in total; 489 with
malignant mass, 412 with benign mass, and 919 normal. The
normal ROIs were selected from both normal and abnormal
mammographic cases as long as the imaged breast did not
contain any physician annotations in either mammographic
view. The mass ROIs were extracted around the DDSM phy-
sician’s annotation. If the annotated mass was close to the
breast skin line, the extracted ROI extended beyond the
breast skin line, thus covering air pixels. There were 42 such
mass ROIs in the first dataset. The normal ROIs were se-
lected randomly within the breast region.

The second dataset contained 483 ROIs extracted from

FIG. 2. Schematic of the KB-CADe system that incorporates the entropy-
based indexing scheme for fast search of the knowledge database. The
scheme assumes that every time a new template is stored in the knowledge
database its entropy is calculated, and the template is indexed accordingly.
The two additional steps that implement the intermediate, entropy-based
retrieval of stored templates are shown in dash outline.
100 DDSM/Lumisys cases completely different from those
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used to create the first dataset. Of those, 84 ROIs depicted
true masses �44 malignant and 40 benign� and 399 ROIs
were false positive detections. There were four true masses
located close to the breast skin line. The false positive ROIs
were extracted around normal mammographic locations that
were indicated as suspicious by a feature-based CADe sys-
tem developed before in our laboratory.32,33 Since the normal
ROIs in Dataset 2 have masslike characteristics, it is ex-
pected that the discrimination of mass from normal ROIs is
substantially harder in Dataset 2 than Dataset 1.

To facilitate a better assessment of the difficulty level of
the mass detection task for both datasets, all masses were
furthered indexed according to their subtlety rating provided
in the DDSM. The mass subtlety rating is a subjective rating
provided by the DDSM radiologist regarding lesion visibil-
ity. This rating ranges from 1 to 5 where a rating of 5 indi-
cates that a lesion is 5 times more obvious than a lesion with
rating of 1. Specifically, in Dataset 1 there were 23 �2.6%�
masses with rating 1, 64 �7.1%� with rating 2, 151 �16.8%�
with rating 3, 204 �22.6%� with rating 4, and 459 �50.9%�
with rating 5. A similar subtlety distribution was observed
for the masses present in Dataset 2. There were 1 mass
�2.3%� with rating 1, 6 �7.1%� with rating 2, 18 �21.4%�
with rating 3, 16 �19%� with rating 4, and 43 �51.2%� with
rating 5.

D. Evaluation studies

The two study aims were pursued separately with two
different experiments. The first experiment was designed to
answer the question: “Can entropy-based indexing improve
the speed of search and decision making for any given
query?” Thus, the first experiment evaluated the modified
KB-CADe system shown in Fig. 2. Different values of the
nearest neighbor parameter K were investigated to determine
its optimal value.

The second experiment was designed to answer: “Can
entropy-based indexing reduce the size of the knowledge da-
tabase by discarding less useful templates without compro-
mising the overall diagnostic performance of the system?”
This experiment does not target computational efficiency per
se but rather system efficiency with respect to data storage
and maintenance. For the second experiment, the available
ROIs were first ranked according to their entropy. The rank-
ing was performed separately for each class of templates
�i.e., mass and normal�. Then, the performance of the KB-
CADe system was monitored starting with an equal number
of the highest-entropy mass and normal templates in its
knowledge database and adding progressively lower-entropy
templates from each class. We call this database reduction
scheme “high-entropy” selection strategy. The same experi-
ment was repeated by depositing the lowest-entropy mass
and normal templates in the database first and then adding
progressively an equal number of higher-entropy templates
from each class. We call this database reduction scheme “low
entropy.”

Both experiments were initially performed using Dataset

1 and a leave-one-case-out sampling scheme. Specifically,
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each ROI in the dataset was excluded once as the query. Of
the 1,819 ROIs remaining in Dataset 1, only those extracted
from DDSM cases different than the query’s served as the
knowledge database. Excluding all ROIs coming from the
same case as the query eliminates any possible biases. The
same experiments were also performed using Dataset 1 as
the knowledge database and Dataset 2 as the test bed for
additional validation on a clinically more challenging task;
the discrimination of true masses from false positive find-
ings.

The results of all experiments were analyzed using re-
ceiver operating characteristic �ROC� analysis34 with the
KB-CADe decision index being the decision variable. The
ROC analysis was performed with the ROCKIT software
developed by Metz at the University of Chicago. Detection
performance was measured using the overall �Az�

34 and par-
tial ROC �0.90Az� area index.35 The partial ROC area mea-
sures the average specificity of the KB-CADe system when it
operates with sensitivity in the range of 90% to 100%. In
cancer detection, the partial area index is clinically more
relevant since the consequences of missing cancer are more
severe than those of a false alarm.

III. RESULTS

A. Entropy-based data statistics

Initially, the entropy of all ROIs in our datasets was mea-
sured. Consistent with our previous studies, the entropy of
each 512�512 pixel ROI was estimated using the histogram
approach with 64 bins. Table I summarizes the statistics of
the entropy index for both datasets and for each subgroup of
cases �malignant mass, benign mass, normal�.

Overall, the average entropy of the mass ROIs was statis-
tically significantly lower than that of the normal ROIs for
both datasets �p-value of a two-tailed t-test �0.001 at 95%
confidence level�. Despite this, utilizing entropy as the deci-
sion index to discriminate between mass and normal ROIs
resulted in mediocre ROC performance �Az=0.70±0.01�.
Thus, using entropy as the decision variable is not particu-
larly useful for mass detection.

There was no statistically significant difference between
the average entropy of the benign and malignant masses.
This finding was true for both datasets �two-tailed p-value
=0.42 for Dataset 1 and two-tailed p-value=0.21 for Dataset

TABLE I. Entropy-based statistics for the two study datasets

Type of ROIs Number of ROIs Entropy ��±��

Dataset 1: Malignant mass 489 5.46±0.56
Dataset 1: Benign mass 412 5.49±0.56
Dataset 1: Normal 919 5.72±0.24

Dataset 2: Malignant mass 44 5.36±0.69
Dataset 2: Benign mass 40 5.50±0.42
Dataset 2: Normal 399 5.41±0.77
2 at 95% confidence level� with corresponding ROC area
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indices of Az=0.53±0.02 for Dataset 1, and Az=0.54±0.06
for Dataset 2, respectively. Thus, entropy alone is not useful
for diagnostic purposes either. Finally, no statistical differ-
ence was observed in the average entropy of masses between
the two datasets �two-tailed p-value=0.45 at 95% confidence
level�. In contrast, the average entropy of the normal ROIs in
Dataset 1 was statistically significantly higher than that of
the normal ROIs in Dataset 2 �two-tailed p-value�0.001 at
95% confidence level�. This finding is not really surprising.
The normal ROIs included in Dataset 2 are suspicious,
“mass-like” ROIs and not randomly chosen as in Dataset 1.
Therefore, it is expected that their average entropy should be
closer to that of the mass ROIs, as confirmed in Table I.

B. AIM 1: Entropy-based indexing for effective search
of the knowledge database

The diagnostic performance of the KB-CADe system was
evaluated without and with the entropy-based indexing
scheme �Fig. 1 versus Fig. 2 configurations�. The K-nearest
neighbor implementation was investigated for K ranging
from 2 �i.e., retrieve the one mass and the one normal tem-
plate that are closest in entropy to the query� to the maxi-
mum possible value �i.e., include all available mass and nor-
mal templates�. The results of this experiment are
summarized in Fig. 3 for both datasets. The figure shows
how the diagnostic performance of the system changes as the
number K of nearest neighbor-in-entropy templates retrieved
for further analysis increases. The diagnostic performance is
reported in terms of the overall and partial ROC area indices
�Figs. 3�a� and 3�b�, respectively�.

Since the ultimate goal of the entropy-based indexing
scheme is to help KB-CADe achieve its best performance
with the minimum possible number of computations per
query, it is important to establish the baseline performance of
the system. The baseline performance is the best perfor-
mance observed when the system operates in its original con-
figuration without any entropy-based indexing �shown in
Fig. 1�. For Dataset 1, the baseline performance was Az

=0.87±0.01, and 0.90Az=0.48±0.02 for all masses. The sys-
tem’s performance was significantly higher for malignant
than for benign masses with respect to both the overall ROC
area index �Az=0.89±0.01 versus Az=0.84±0.01, two-tailed
p-value�0.004�, as well as the partial ROC area index
�0.90Az=0.57±0.03 versus 0.90Az=0.41±0.03, two-tailed
p-value�0.002�. Using Dataset 1 as the knowledge database
and Dataset 2 as the queries, the baseline ROC performance
of the KB-CADe system was Az=0.81±0.03 and 0.90Az
=0.32±0.06 for all masses. The detection performance was
very similar for both benign �Az=0.81±0.04, 0.90Az
=0.32±0.09� and malignant masses �Az=0.82±0.03, 0.90Az
=0.33±0.09�. Although there was a substantial performance
decline from Dataset 1 to Dataset 2, this was an expected
finding considering that the detection task is far more chal-
lenging in Dataset 2.

The computational demands of the KB-CADe system in
its original configuration were proportional to the size of its

knowledge database. For Dataset 1, approximately 1815–
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1819 MI calculations were needed per query. This number is
not fixed in Dataset 1 due to the leave-one-case-out sampling
scheme utilized for this experiment. Some mammographic
cases contributed more than one ROI in Dataset 1. When an
ROI was excluded to serve as the query, all other ROIs ex-

tracted from the same mammographic case were excluded
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for similarity assessment to avoid a positive bias. Conse-
quently, for those queries the knowledge database contained
slightly fewer than 1819 �=1820-1� templates. However,
there were no cases contributing more than five ROIs in
Dataset 1. In contrast, 1820 MI calculations were performed

FIG. 3. Diagnostic performance of the
KB-CADe system including the
entropy-based indexing scheme based
on the �a� overall and �b� partial ROC
area indices. Performance is shown at
steadily increasing values of the K
nearest-neighbor parameter for
Datasets 1 and 2.
when the system was tested on cases drawn from Dataset 2.
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This number is fixed since there was no overlap between the
knowledge database �Dataset 1� and the query database
�Dataset 2�.

Figure 3 shows that including the entropy-based indexing
scheme did not result in any further improvement of the
baseline KB-CADe diagnostic performance for Dataset 1. It
was able however to duplicate the baseline performance. By
limiting its MI-based calculations to only the 400 mass and
400 normal templates that are closest to the query �in entropy
space�, the KB-CADe maintained its baseline diagnostic per-
formance in Dataset 1 �Az=0.87±0.01 and 0.90Az
=0.49±0.03�. A consistent trend was observed with Dataset
2. Using the entropy-based indexing scheme, the KB-CADe
system performed robustly �Az=0.80±0.03 and 0.90Az
=0.32±0.06� while reducing the number of computations
from 1,820 to 800 per query. Overall, the nearest-neighbor
entropy-based indexing scheme improved the computational
efficiency of the system by almost 55%, reducing the number
of necessary MI-based computations from roughly 1800
down to 800 calculations per query.

C. AIM 2: Entropy-based indexing for identifying
informative templates

The entropy index was also evaluated as the foundation of
a selection strategy to determine which templates could be
eliminated from the knowledge database without compro-
mising the overall diagnostic performance of the KB-CADe
system. Trimming down the knowledge database so that only
the globally most informative templates are preserved helps
satisfy possible database storage limitations.

ROC performance is presented separately for Dataset 1
�based on the leave-one-case-out scheme� and then validated
on Dataset 2 as done with aim 1. Figure 4�a� shows how the
overall ROC area index of the KB-CADe system changes
based on the composition of its knowledge database for
Dataset 1. As a reference point, the figure also includes the
performance of the system when templates are added in the
knowledge database by selecting them randomly from the
available pool of mass and normal templates. This database-
building scheme is labeled “random selection.” Figure 4�b�
summarizes the results of the same experiment using Dataset
2 as the testbed. The results shown for the random selection
database-building scheme are based on averaging the
KB-CADe performance across five different random
samplings.

Some interesting trends are observed in Fig. 4�a�. First,
the ROC performance of the system is dramatically low
when the knowledge database is sparse. As more templates
are deposited in the database, the KB-CADe detection per-
formance improves steadily. The most rapid improvement
occurs with the high-entropy selection scheme. Depositing
first the higher entropy mass and normal templates improves
rapidly the diagnostic performance of the KB-CADe system.
The system achieves its highest performance in Dataset 1
�Az=0.89±0.01, 0.90Az=0.48±0.03� using only the 300 mass
and 300 normal templates with the highest entropy. Actually,

this ROC performance is significantly higher than that
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achieved with the 400 highest entropy templates �Az

=0.87±0.01� or with more than 800 templates �Az

=0.88±0.01�. However, no significant difference is observed
with respect to the partial ROC area index. Overall, Fig. 4�a�
suggests that maintaining a database of only 600 high-
entropy templates instead of 1800 does not affect the sys-
tem’s diagnostic performance. In contrast, the ROC perfor-
mance of the system remains significantly lower when
relying on low-entropy templates. As more higher-entropy
templates are added in the knowledge database, the diagnos-
tic performance of the system steadily improves. Surpris-
ingly, random storing of templates works quite well. How-
ever, the random selection scheme never outperforms the
results obtained when the KB-CADe system relies only on
the higher-entropy templates. Furthermore at 600 templates,
the high-entropy building scheme results in significantly bet-
ter performance than the random selection plan with respect
to the ROC area index �two-tailed p-value=0.02� but not
with respect to the partial ROC area index �two-tailed
p-value=0.06�.

A similar trend was observed with Dataset 2 �Figure 4�b��.
Relying on the 600 templates with the highest entropy, the
KB-CADe system performed very similar to the baseline
performance �Az=0.80±0.03, 0.90Az=0.34±0.06�. Using the
1000 higher entropy templates, the previous performance im-
proved significantly with respect to the ROC area index
�Az=0.82±0.03, two-tailed p-value=0.006� but not with re-
spect to the partial ROC area index �0.90Az=0.33±0.06, two-
tailed p-value=0.76�. It should be noted, however, that this
optimized performance did not reach statistical significance
compared to random selection as we observed in Dataset 1.
Actually, the random selection strategy appears to be a quite
effective deposit strategy for the beginning stages of the da-
tabase building process. This finding may be due to the dif-
ficulty of the detection task and the substantially smaller size
of Dataset 2 compared to Dataset 1.

An examination of the 600 high-entropy templates re-
vealed a similar distribution of mass and normal templates
according to mammographic density. Specifically, 17.3%
high-entropy mass templates came from fatty breasts, 59.3%
from fibroglandular breasts, 21.3% from heterogeneous
breasts, and 2% from dense breasts. Similarly, 13.7% high-
entropy normal templates came from fatty breasts, 47.3%
from fibroglandular breasts, 33% from heterogeneous
breasts, and 6% from dense breasts. Of the 300 high-entropy
mass templates, exactly 50% depicted malignant masses, and
the remaining depicted benign masses. Furthermore, 1.3% of
the mass templates were assigned a DDSM subtlety rating 1,
7% a subtlety rating 2, 15% a subtlety rating 3, 25% a
subtlety rating 4, and 51.7% a subtlety rating 5. The subtlety
rating distribution of the 300 high-entropy masses is very
similar to the one reported earlier regarding the full set of
901 masses present in Dataset 1.

D. Putting it all together

The previous experiments suggested that entropy-based

indexing could be a useful modification for our KB-CADe
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system. The indexing scheme reduced the system’s compu-
tational complexity when studied independently for two dif-
ferent tasks: �i� as a selection strategy to build a concise
knowledge database where superfluous templates are dis-
carded, and �ii� as a database search strategy to quickly iden-
tify a subset of stored templates to be used for decision mak-
ing regarding the query. A logical extension of this work is to
test whether putting both the entropy-based database reduc-
tion and entropy-based database search mechanisms in place
Medical Physics, Vol. 34, No. 8, August 2007
could have any additional computational benefits.
First, the 600 most informative �i.e., highest entropy�

cases from Dataset 1 were used as the knowledge database.
Note that 300 were mass and 300 were normal templates
with similar entropy statistics �average entropy 5.82±0.04
for mass versus 5.85±0.03 for normal cases�. Then, the KB-
CADe was tested on Dataset 2 for false positive reduction.
During testing, entropy based indexing with the K nearest
neighbor implementation was applied for decision making.

FIG. 4. ROC area index of the KB-CADe system based
on the total number and type of templates stored in the
knowledge databank. The reported results assume that
the prevalence of mass and normal templates is consis-
tently maintained at 50% in the knowledge database.
Detection performance is shown with respect to the
ROC area for �a� Dataset 1 ��Az

=0.01� and �b� Dataset
2 ��Az

=0.03�.
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The results of this study are summarized in Table II. The
results are shown for representative values of the parameter
K ranging from 100 to 600 �i.e., the full, high-entropy
knowledge database�.

Table II shows that KB-CADe achieves its highest perfor-
mance �Az=0.81±0.03, 0.90Az=0.32±0.06� when focusing on
the 400 out of the 600 high-entropy templates that are near-
est in entropy to the query. Thus, for the specific experiment,
entropy-based indexing results in almost 80% reduction in
computations per query. Instead of calculating the MI be-
tween a query and the full database of 1820 available tem-
plates to make an optimized decision, only 400 MI calcula-
tions are necessary without any performance decline. Similar
to the previous section, we include as a reference point the
performance of the KB-CADe system when �i� its knowl-
edge database is composed of 600 randomly selected tem-
plates �300 mass+300 normal� and �ii� the system is en-
hanced with entropy-based nearest-neighbor modification.
The random selection scheme was repeated five times, se-
lecting different templates from the available Dataset 1 to
build a knowledge database of 600 templates. The results
reported in the table for the random selection building
scheme are based on averaging the KB-CADe performance
across those five experiments.

The table clearly shows that combining the entropy-based
search strategy with a smaller knowledge database of ran-
domly selected templates is significantly less effective than
when the entropy-based search is performed in a knowledge
database of carefully tailored higher-entropy templates. The

TABLE II. Application of the KB-CADe system enha
based database search mechanisms.

Number of
nearest-neighbor

templates K

Knowledge da

High-entropy templa

Az 0

100 0.79±0.03 0.2
200 0.79±0.03 0.2
400 0.81±0.03 0.3
600 0.81±0.03 0.3

TABLE III. Detection performance according to the
modified KB-CADe system.

Mass
subtlety

ROC area index Az

Original
KB-CADe

Entropy-
KB-C

1+2 �subtle� 0.87±0.05 0.91±
3 0.82±0.04 0.76±
4 0.81±0.05 0.80±

5 �obvious� 0.81±0.04 0.81±
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latter strategy produced statistically significantly better re-
sults with respect to both performance indices �two-tailed
p-value�0.05� for K=400.

The best performance achieved for K=400 with the
entropy-enhanced KB-CADe system was further analyzed
with respect to mass subtlety to assess whether the proposed
entropy modification impacts system performance differently
depending on mass visibility. Table III shows the detection
performance of the KB-CADe system when it operates with-
out and with the entropy modification. The table confirms
that performance remains robust across the original and the
modified system for all mass subtlety ratings. This finding is
consistent with respect to both the overall and partial ROC
area indices. A noticeable decline in performance was ob-
served for masses with a subtlety rating of 3. However, the
difference was not statistically significant �two-tailed
p-value=0.1453�. Actually, none of the differences were sta-
tistically significant at the 95% confidence level. Therefore,
the entropy-based modification maintains the detection per-
formance of the original system irrespective of mass subtlety.
Note that masses with subtlety ratings 1 and 2 were com-
bined into one group since there was only one mass with
subtlety rating 1 in Dataset 2.

IV. DISCUSSION

The computational complexity of any knowledge based
system depends on two factors: �i� the size of its knowledge
database and �ii� the numerical demands of the pairwise

with entropy-based database reduction and entropy-

e composition �600 templates in total�

Randomly selected templates

Az 0.90Az

6 0.70±0.03 0.20±0.05
6 0.76±0.03 0.22±0.06
6 0.77±0.03 0.25±0.06
6 0.79±0.03 0.27±0.06

s subtlety rating for the original and the entropy-

Partial ROC area index 0.90Az

fied Original
KB-CADe

Entropy-modified
KB-CADe

0.60±1.6 0.76±0.09
0.46±0.11 0.29±0.12
0.41±0.12 0.43±0.12
0.24±0.09 0.26±0.09
nced

tabas

tes

.90Az

9±0.0
7±0.0
2±0.0
3±0.0
mas

modi
ADe

0.03
0.06
0.05
0.04
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comparisons between the query and each case stored in the
knowledge database. As KB systems become increasingly
more popular for medical decision making in radiology, the
practical limitations of maintaining and using these systems
need to be considered carefully.

We have studied this issue with respect to our own KB-
CADe system for the detection of masses in screening mam-
mograms. Since our system utilizes mutual information, a
featureless similarity measure that is computed directly from
the image histograms, the system is spared the elaborate im-
age preprocessing steps of feature-based KB-CADe systems.
However, the computational complexity of our KB-CADe
still increases much faster than that of a feature-based CADe
system. An exhaustive calculation of the mutual information
between a query case and every other case stored in the
knowledge database becomes impractical as more new cases
are deposited in the database. Furthermore, continuous de-
posit and accessibility of mammographic cases will become
impractical in the long run, due to data storage requirements.

To address these limitations, we have proposed an
entropy-based indexing scheme as an effective way to im-
prove the efficiency of our KB-CADe system while not re-
ducing its overall detection performance. The proposed
entropy-based indexing scheme was evaluated first as a
search mechanism to sort through the available data fast and
identify the stored cases that are more diagnostically useful
for a specific query. In this capacity, the entropy-based in-
dexing scheme was applied to improve the speed of analysis
and computation time per query. In addition, the same index-
ing scheme was evaluated as a selection mechanism to main-
tain the globally most useful cases in the knowledge data-
base. Although this selection mechanism does not really
affect the computational efficiency of our KB-CADe system,
it does avoid excessive storage of cases that are superfluous.
Case reduction is often necessary in large knowledge data-
bases with a fixed storage limit to avoid needless storage of
cases that do not improve diagnostic performance. Both case
reduction and search mechanisms are critical components for
efficient clinical knowledge-based systems. They facilitate
easier maintenance and navigation of knowledge databases.
It should be noted that although our present study relied only
on a single attribute �i.e., image entropy�, the proposed in-
dexing scheme could be easily modified to include other im-
age and/or textual descriptors of clinical importance.

First, the proposed indexing scheme was shown to im-
prove the speed of search of the knowledge database by
55%, while not compromising the detection performance of
the system. This result was confirmed with two datasets of
different difficulty levels. Specifically for a typical query
case, the KB-CADe system running on a single processor of
an Apple Power Mac G5 �2�2.7 GHz POWERPC CPU
with 8 GB memory� requires 70 s for 1820 comparisons
without entropy-based indexing. Integrating the entropy-
based indexing scheme reduces the computational time down
to 31 s per query. The entropy-based sorting and searching
step adds only 2 s in the decision making process �for a total

of 31 s�. It should be emphasized that significant gains are
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achieved with parallel processing. For example, running the
KB-CAD system on ten processors reduces the computa-
tional demands by tenfold.

These results were based on a nearest-neighbor clustering
implementation. Actually, we also explored two other imple-
mentation schemes that proved to be significantly less effec-
tive. The other two schemes were based on absolute entropy
distance or case-dependent distance from the query case. The
fixed-distance implementation assumes that there is a fixed
threshold e that is optimal for all queries. Therefore, only
templates with entropy within a fixed distance e from the
query’s entropy are retrieved for further analysis. The case-
dependent distance implementation assumes that the distance
is a fraction of the query’s entropy �e.g., retrieve templates
with entropy that is within 10% from that of the query’s�.
Therefore, low-entropy �or low uncertainty� queries require a
tighter radius for retrieving similar templates than the higher-
entropy queries. None of these two implementations were
able to achieve similar diagnostic performance while reduc-
ing significantly the computational burden of the KB-CADe
system. We are currently working on an evolutionary pro-
gramming technique to optimize the case-dependent distance
implementation scheme. We believe that a case-dependent
clustering scheme is a more promising strategy because it
takes into account the unique characteristics of each query
case.

Second, a dramatic improvement in data storage require-
ments was observed when the entropy-based indexing
scheme was asked to potentially eliminate knowledge cases
that do not seem to contribute much to the overall perfor-
mance of the system. The study suggested that the higher-
entropy knowledge cases are more useful for maintaining the
expected performance level of our system. The system’s per-
formance was optimized when relying only on the 300 mass
and 300 normal knowledge cases with the highest entropy.
For the specific datasets employed in this study, this finding
translates into 66% reduction of data storage requirements
for our KB-CADe system.

The higher diagnostic contribution of the high-entropy
mass and normal templates is not very surprising. In medical
imaging, we often consider entropy a statistical measure of
randomness that is used to characterize image texture. Thus,
our study suggests that mass templates and normal templates
with more complicated texture seem to be more useful for
the overall detection performance of our KB-CADe system.
A detailed analysis of our results with Dataset 1 showed that
this finding was consistent for both high-entropy and low-
entropy query cases. Specifically, for low-entropy queries a
knowledge database composed of either low- or high-entropy
templates was equally effective �Az=0.77±0.02�. Further-
more, this performance was very similar to that achieved
relying on the full database of all available templates �Az

=0.76±0.02�. In contrast, for high-entropy queries, a knowl-
edge database composed of only high-entropy templates was
significantly more effective than a database containing only
low-entropy templates �Az=0.90±0.01 versus Az
=0.83±0.02�. As with the low-entropy queries, relying on
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the full knowledge database was as effective for high-
entropy queries �Az=0.89±0.02�. However, a noticeable dif-
ference in KB-CADe performance is observed between low-
and high-entropy queries regardless of the knowledge data-
base composition. Further investigation is needed to explain
this finding, as well as identify specific queries for which
relying only on high-entropy knowledge cases has a detri-
mental effect. Such data mining is essential to derive an ef-
fective case deposit mechanism, after the basic body of
knowledge has been built in the database.

An unexpected finding of the study was that the random
selection strategy was quite effective for building the knowl-
edge database. This was particularly true in the beginning
stages of the knowledge database building process. Our re-
sults suggest that while initially a random selection scheme
is sufficient to build a certain body of knowledge in the
database, a more sophisticated selection strategy maybe pref-
erable later to determine whether an incoming template
should be deposited or not. Extensive studies with diverse
datasets are needed to validate the generalizability of the
above observations.

By pursuing separately the two study aims we were able
to delineate the contribution of the entropy-based indexing
scheme as a database search and database reduction mecha-
nism. The indexing scheme was as effective for building a
concise knowledge database as it was for searching the da-
tabase to find templates that are diagnostically useful for a
specific query. Putting both mechanisms in place resulted in
improvement regarding both computational speed and data
storage requirements. Based on the results reported in Tables
II and III, the computational demands were reduced by al-
most 80% per query case while the diagnostic performance
of the KB-CADe was effectively maintained irrespective of
mass subtlety. Future analysis will focus on delineating the
impact of mass size as well, to elucidate the impact of the
entropy-based system modification, system limitations, as
well as possible extensions for the detection of the most
challenging, smaller masses. Since image entropy is calcu-
lated using the full ROI and not just the suspected mass, the
contribution of the background is substantial for smaller
masses. Therefore, it is possible that an entropy-based index-
ing scheme using only the segmented abnormality is a better
approach. Unfortunately, the DDSM database does not in-
clude information regarding the size of the annotated masses.
The DDSM-provided annotations cannot be utilized for mass
size estimation because they are often substantially larger
than the actual masses. For the present study, we used the
DDSM mass subtlety rating as a surrogate measure of case
difficulty in place of mass size.

The major limitation of our study is that it is empirical in
nature. Therefore, it is expected that the conclusions depend
on the available data. This is precisely the reason we em-
ployed two different datasets. Although both datasets were
generated using mammographic cases from the same bench-
mark database of screening mammograms, the selection cri-

teria were different between the datasets to simulate two pro-
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gressively more challenging detection tasks. It was
reassuring to observe the same general trends between the
two datasets.

In conclusion, it is important to balance diagnostic perfor-
mance, computational speed, and data storage requirements
when developing knowledge databases for CADe use. Our
entropy-based indexing scheme was a significant step toward
achieving those goals with our own knowledge-based CADe
system in mammography.
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ABSTRACT 

 

The purpose of this project is to study two Computer Aided Detection (CADe) systems for breast masses for 

digital tomosynthesis using reconstructed slices. This study used eighty human subject cases collected as part 

of on-going clinical trials at Duke University. Raw projections images were used to identify suspicious regions 

in the algorithm’s high sensitivity, low specificity stage using a Difference of Gaussian filter. The filtered 

images were thresholded to yield initial CADe hits that were then shifted and added to yield a 3D distribution 

of suspicious regions. The initial system performance was 95% sensitivity at 10 false positives per breast 

volume. Two CADe systems were developed. In system A, the central slice located at the centroid depth was 

used to extract a 256x 256 Regions of Interest (ROI) database centered at the lesion coordinates. For system B, 

5 slices centered at the lesion coordinates were summed before the extraction of 256x 256 ROIs. To avoid 

issues associated with feature extraction, selection, and merging, information theory principles were used to 

reduce false positives for both the systems resulting in a classifier performance of 0.81 and 0.865 Area Under 

Curve (AUC) with leave-one-case-out sampling. This resulted in an overall system performance of 87% 

sensitivity with 6.1 FPs/ volume and 85% sensitivity with 3.8 FPs/ volume for systems A and B respectively. 

This system therefore has the potential to detect breast masses in tomosynthesis data sets. 

 

 

1. INTRODUCTION 

 

Breast cancer is the second-most deadly type of cancer for women in the United States, second only to lung 

cancer. The American Cancer Society estimates that 240,510 women will be diagnosed with breast cancer in 

2007. They also estimate that breast cancer will kill an estimated 40,910 women in the same year 
1
. Survival 

rates are significantly higher when the cancer is detected at an early stage 
2-4

. Several groups have developed 

CADe algorithms for mammography 
5-22

. This study seeks to develop a 3-D Computer Aided Detection 

(CADe) system for the task of mass detection by using data obtained from a prototype Siemens tomosynthesis 

system for breast. Despite this new modality’s promise to increase sensitivity and reduce unnecessary biopsies, 

rapid and widespread adoption of tomosynthesis might be impeded by the increase in radiologist reading time 

per case given the large volume of data generated. Thus, CADe for breast tomosynthesis may be crucial not 

just to locate overlooked lesions as with mammography, but also to streamline radiologist workflow when 

interpreting such a large volume of data. As current investigators in CT colonography have suggested, CADe 

can potentially ease radiologist workflow when working with large 3D data sets 
23

.  
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2. METHODS AND MATERIALS 

 
2.1 Database 

A prototype breast tomosynthesis system by Siemens Medical Solutions was developed to acquire 25 

projection images over a 50-degree angular range in approximately 13 seconds. Resultant projection images 

from this system are of high resolution (85 micron pixel size), and are acquired at the rate of 2 images/second 

frames. So far, over 235 human subjects have been recruited at the Duke University Medical Center. Bilateral 

MLO views were acquired in screening cases, while bilateral MLO and CC views were acquired for diagnostic 

and biopsy cases. A single MQSA breast imaging radiologist with 15 years experience interpreted these cases 

in separate and blinded readings. The gold standard was established from information available from all 

modalities for a patient. For this study, we used data from eighty patients of which 20% contained a lesion in at 

least one view, while the other 80% were completely normal cases.  

 

We wished to draw upon our existing mammography-based CADe techniques, and by working with projection 

images - which are similar to low dose mammogram images - we were able to achieve that objective to 

identify an initial set of suspicious regions. While our algorithm’s initial stage is reconstruction algorithm 

independent, the second stage uses reconstructed slices for FP reduction. Other groups have implemented 

completely reconstruction independent CADe 
24

. 
 

 

2.2 Experimental Design 

 

Our CADe algorithm can be divided into two stages – (1) the high sensitivity, low specificity stage, (2) False 

Positive (FP) stage. Figures 1 and 2 graphically depict these two stages.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The first stage of the algorithm adopted in this study for our CADe system  
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Figure 2: The second stage of the algorithm adopted in this study for our CADe system  

 

2.2.1 High-sensitivity, low-specificity stage 

 

Projection images contain greater intensity variation across lesion and non- lesion locations when compared to 

reconstructed slices. Hence, to identify initial suspicious locations we chose to work with projection images 

rather than reconstructed slices as they are likely to retain the maximum possible information about the lesion. 

Other groups have tried a similar approach 
24, 25

. Potential suspicious locations were identified using a 

Difference of Gaussian (DoG) filter on each of the projection images. These segmented lesion candidates in 

every projection image were shifted and added using the acquisition angle and known geometry. A typical 

resulting 3-D volume of CADe suspicious locations is shown in figure 3. The CADe suspicious locations were 

connected in 3D space using a 3x3x3 connectivity rule to determine location and shape of the object. With 

shift and add, significant out of plane blur is observed. However, the true object lies in the plane with the least 

area of the classic starburst shape obtained via the shift and add algorithm. A graphical representation of this 

stage of the algorithm is displayed in figure 1. 

 

Once the first stage of the CADe algorithm identified initial candidates for mass detection by giving us the X, 

Y and Z location of the centroid of the volume of interest (VOI), we extracted ROIs from the reconstructed 

breast slice images that the radiologists look at. These breast volume reconstructions were obtained by filtered 

backprojection reconstruction 
26

. The first stage of the CADe algorithm yielded a 95% sensitivity at 10 false 

positives per breast volume for both systems.  
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Figure 3: Maximum intensity projection image of subject 33’s CAD suspicious locations. The mass comes in focus where the 

starburst shapes in the YZ plane have the least area. Significant out of plane blurring is observed with shift and add 

reconstruction of the CAD suspicious locations. Both lesions were detected by this stage of the CAD algorithm. 

 
2.2.1 False Positive Reduction 

 

We used a second stage false positive reduction algorithm that relies on information theoretic principles to 

assess image similarity. We investigated two false positive reduction schemes and they are graphically shown 

in figure 2. For system A, we obtained 256x 256 ROIs centered at the central slice containing the suspicious 

location given by the first stage of the algorithm. For system B, we used the same locations, however we 

summed 5 reconstructed slices centered at the location. The motivation behind this was that lesions typically 

span multiple reconstructed slices and we wished to investigate whether giving more ‘signal’ to our false 

positive reduction scheme resulted in an improvement in performance. 

 

In our algorithm’s false positive reduction stage, the query ROI is compared to a knowledge database of ROIs 

with known ground truth. Similar cases based on similarity metrics such as mutual information are retrieved 

from the knowledge database. A decision is formulated regarding the query region using the retrieved similar 

cases. If the query region depicts a mass, then the calculated decision index is higher than if it contains normal 

breast tissue 
27, 28

. ROIs obtained from both system A and B were used separately as knowledge database and 

tested using a leave-one-case-out sampling scheme.  

 

For this experiment, we measured mutual information as a similarity metric. Mutual information (MI) is a 

measure of the information one random information contains about the other. Hence knowledge of the first 

random variable reduces the uncertainity in predicting the value of the second random variable. It is given by 

the following equation 
29

:  

 

 

MI(X,Y ) = PXY (X,Y )log2
PXY (x,y)

PX (x)PY (y)
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where X and Y are two random variables, p x,y( )  is their joint probability mass function because this is a 

discrete rather than continuous random variable and p x( )  and p y( )  are the marginal probability mass 

functions of X and Y. Further details about these measures and their specific application have been previously 

published 
27, 28

.  

 

 

However, we still need to obtain a CADe score for a given ROI of unknown pathology. This is done via the 

adoption of a decision index. Given a query tomosynthesis ROI Qi , a decision index D(Qi) was calculated by 

our algorithm as the difference of two terms. Assuming that the knowledge database contains k mass cases and 

l normal cases. The first term of the decision index D(Qi) measures the average MI between the query ROI and 

its k best mass matches Mj . Similarly, the second term measures the average MI between the query ROI and its 

l best normal Nj matches,  

 

D(Qi) =
1

k
MI(Qi,M j )

j=1

k 1

l
MI(Qi,N j )

j=1

l

      (2) 

 

Theoretically, a query ROI depicting a mass should have a higher D(Qi). For this study eighty cases were used. 

This algorithm’s initial high sensitivity, low specificity stage yielded ROIs that were extracted from the middle 

projection. Hence, false positive reduction was done using only ROIs obtained from the middle projection 

image of each scan. Results were reported as Receiver Operating Characteristic (ROC) Area Under Curve 

(AUC) by applying a leave-one-out cross validation scheme on all available ROIs. 
 

 

 

3. RESULTS 
 

We used Mutual Information (MI) as a similarity metric for the two false positive reduction schemes. The results for 

both the systems are tabulated in table 1 below.  

 

 

 Classifier AUC Classier partial AUC (TPF >=0.90) 

System A 0.81 +/-  0.04 0.10 

System B 0.865 +/-  0.04 0.30 

Table 1: Performance of the false positive reduction stage of the CAD algorithm for the two systems A and B using 

mutual information as the similarity metric.  

 

While the performances in the important high-sensitivity range of the classifier output were both good, system B 

showed an advantage. The two classifier ROC curves are shown in figure 4. When the two false positive reduction 

schemes were applied to the initial suspicious regions at the threshold obtained for 92% and 89% classifier 

sensitivities, the final result over this data set was 87% with 6.1 FPs/ volume and 85% sensitivity with 3.8 FPs/ 

volume for systems A and B respectively. The final FROC curves for both systems, pre and post false positive 

reduction stage are shown below in figure 5. 
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Figure 4: ROC curves for the two system classifiers being tested. The classifier for system B with more ‘signal’ outperforms th e 

system A classifier that contained only the central slice.  

 
Figure 5: FROC curves for the two systems being tested.  System B was trained using tomosynthesis ROIs from the sum of 5 

slices about the central slice. With a leave-one-case-out sampling, system B performs better than System A that contained only 

the central slice of the reconstructed volume.  
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4. CONCLUSIONS 
 

We have demonstrated viability of a promising CADe algorithm using models with the extremely low-dose 

tomosynthesis projection slices and information theoretic principles for false positive reduction. Future work 

will expand the use of information theory principles to be fully 3D for reduction of false positives. 

Concurrently, we will continue to work towards increasing the size of our database, and will explore direct 

optimization of the CAD techniques for tomosynthesis as well. 
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ABSTRACT

Featureless, knowledge-based CAD systems are an attractive alternative to feature-based CAD because they require no

to minimal image preprocessing. Such systems compare images directly using the raw image pixel values rather than

relying on low-level image features. Specifically, information-theoretic (IT) measures such as mutual information (MI)

have been shown to be an effective, featureless, similarity measure for image comparisons. MI captures the statistical

relationship between the gray level values of corresponding image pixels. In a CAD system developed at our laboratory,

the above concept has been applied for location-specific detection of mammographic masses. The system is designed to

operate on a fixed size region of interest (ROI) extracted around a suspicious mammographic location. Since mass sizes

vary substantially, there is a potential drawback. When two ROIs are compared, it is unclear how much the parenchymal

background contributes in the calculated MI. This uncertainty could deteriorate CAD performance in the extreme cases,

namely when a small mass is present in the ROI or when a large mass extends beyond the fixed size ROI. The present

study evaluates the effect of ROI size on the overall CAD performance and proposes multisize analysis for possible

improvement. Based on two datasets of ROIs extracted from DDSM mammograms, there was a statistically significant

decline of the CAD performance as the ROI size increased. The best size ranged between 512x512 and 256x256 pixels.

Multisize fusion analysis using a linear model achieved further improvement in CAD performance for both datasets.

Keywords: classification and classifier design, mammography, detection

1. INTRODUCTION

The task for a radiologist of reading and properly identifying all lesions in a mammogram accurately and efficiently is a

difficult one. It is hoped that an effective CAD system will provide the radiologist with a reliable second opinion,

leading to high sensitivity. While clinical studies have shown that the addition of a CAD system can increase the

sensitivity from 16.1%
1
up to 19.5%

2
, a major complaint is the lack of specificity, or higher than desired false positive

rate
3
.

In earlier studies, we introduced a featureless, information-theoretic CAD (IT-CAD) system for the detection of

masses in regions-of-interest (ROIs) deemed suspicious during screening
4,5,6
. This was accomplished by extracting

512x512 pixel ROIs around the suspicious image locations and comparing them to a knowledge base of other 512x512

pixel ROIs with known ground truth. However, rather than comparing features such as shape, size, and other physical

features, as many CAD systems do, our system relies on information theoretic principles to determine similarity. In our

IT-CAD system, mutual information (MI) measures are used to assess the similarity between ROIs. However, this fixed

size ROI approach may be inadequate. Masses can vary in size from thousands of pixels to just tens of pixels. This

means that for small masses, background parenchyma would comprise most of the information in the ROI, while some

of the larger masses may not be fully contained within the ROI. It would seem that a variable ROI size scaled to match

the size of the mass would be better suited to capturing all the relevant information.
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The purpose of this study was (i) to assess the effect of ROI size on the detection accuracy of our CAD system, and

(ii) investigate multisize analysis as a possible means to improve its diagnostic performance.

2. MATERIALS AND METHODS

2.1 The IT-CAD System

The IT-CAD system, illustrated in Figure 1, operates using raw image data without any preprocessing. The system

is designed to operate on a fixed size ROI extracted around a suspicious mammographic location. The query ROI is

compared to other ROIs stored in the system’s knowledge database. The knowledge database consists of a mix of ROIs,

some containing biopsy-proven masses and other normal breast parenchyma. The comparison is done using mutual

information (MI) as the similarity measure.

Fig. 1. Diagram illustrating operation of the IT-CAD system where Q represents the query ROI, M represents a mass
ROI, and N represents a normal ROI.

For a query ROI Q and a knowledge ROI T, the MI, I(Q;T), is given as:

where P QT (q,t) is the joint probability density function (pdf) of the two images based on their corresponding pixel values,

and P Q (q) and P T (t) are the marginal pdfs.

A decision index between 0 and 1 is returned for each comparison in the database. The decision index compares

how well a query ROI matches knowledge ROIs that depict masses vs. normal breast parenchyma. The decision index

D(Q) is defined as follows:
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A value closer to 1 indicates higher suspicion that the query ROI contains a mass, while a value closer to 0 means

more confidence that the query ROI is normal.

2.2 Data

We used two different sets of data in this study. Both sets were extracted from mammograms from the University of

South Florida’s Digital Database for Screening Mammography (DDSM), all with known truths
7

. The first set contains

1,557 ROIs extracted from the mammograms. Of those, 901 depicted masses of varying size, while the remaining 656

ROIs contained normal tissue.

The second set contained 483 ROIs. These ROIs were extracted from the CC view of 100 DDSM cases that were

reserved for testing. Of those, 84 were mass ROIs and 399 were normal but deemed suspicious (i.e., false positives)

according to an in- house CAD system presented before.
8,9

This particular prescreening system was a feature based

system used to identify suspicious regions in the mammogram. It first (i) applied a difference of Gaussians filter, (ii)

detected suspicious regions at high sensitivity using a gray-level thresholding procedure, (iii) extracted and selected

features, and (iv) applied a Fisher’s linear discriminant analysis to remove as many false positives as possible.

In both datasets the ROIs were extracted at three fixed sizes (1024x1024, 512x512, 256x256 pixels) around the

mass and FP locations indicated by the prescreening system. Similarly the normal ROIs were extracted for the same

sizes. Normal ROIs were extracted only from normal mammograms of the first dataset around randomly chosen

locations within the breast region. The underlying idea is that 256x256 pixel ROIs are better suited to small masses

while 1024x1024 pixel ROIs are better suited to large masses.

Figure 2 shows an example mass ROI extracted at three different sizes. Note that at 256x256 pixels, the margin is

not preserved while at 1024x1024 pixels a large fraction of the ROI landscape is occupied by background parenchymal

tissue.

Fig. 2. Example of a mass ROI extracted at a) 1024x1024 pixels b) 512x512 pixels c) 256x256 pixels.

a b c
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2.3 Experimental Design

To study the impact of ROI size on IT-CAD performance, two experiments were conducted.

Experiment 1: Fixed Size

At each ROI size, the first set of 1,557 ROIs was used in a leave-one-out manner. In other words, each ROI was

excluded once to serve as a query while the remaining served as the knowledge database.

Then, dataset 1 was used as the knowledge database and dataset 2 was used as the query database. This experiment

was designed to determine the effect of ROI size on the IT-CAD performance when applied for false positive reduction.

Experiment 2: Multi-Size Fusion

The IT-CAD outputs for the 3 respective sizes were merged with a linear discriminant (LDA) decision model to

assess whether multisize fusion improves CAD performance. The same leave-one-out sampling scheme was applied for

dataset 1 to determine the performance of the multifusion scheme for discriminating masses from normal ROIs.

Subsequently, dataset 1 was used to train LDA and then test it on dataset 2 to determine the performance of the
multifusion scheme for discriminating masses from false positive ROIs.

2.4 Performance Evaluation

To evaluate performance, a receiver operating characteristics (ROC) analysis
10
was performed for each experiment.

The ROCKIT software developed by Metz et al (available at www.radiology.uchicago.edu/krl/toppage 11.htm) was

applied with the IT-CAD decision index as the ROC decision variable.

LDA was also applied using R software
11,12
, a GNU project developed by the R Foundation for Statistical

Computing (available at www.R-project.org).

3. RESULTS

Table 1 summarizes the performance of the first experiment. ROC performance varies depending on the ROI size

for both datasets. The largest size (1024x1024) provides the worst detection performance in Dataset 1. The performance

decline was statistically significant. The best performance was observed for the middle size (512x512) in dataset 1, with

no statistically significant advantage (two-tailed p-value=0.35) over the smallest size (256x256). These trends are likely

due to many of the masses being “lost” in the vast background of the 1024x1024 ROIs, and a few masses not being

entirely included in the 256x256 ROIs.

Table 1: ROC performance of the IT-CAD system depending on the ROI size

ROI SIZE Az (Masses vs. Normals) Az (Masses vs. FPS)

256 x 256 pixels 0.857±0.010 0.814±0.025

512 x 512 pixels 0.863±0.009 0.787±0.026

1024 x 1024 pixels 0.777±0.011 0.656±0.032
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Similar trends were observed for the dataset 2 as well. The smallest ROI size produced the best CAD performance

but without reaching statistical significance over the medium ROI size (two-tailed p-value=0.24). This finding is mainly

due to the fact that this dataset contains smaller masses than dataset 1. Figures 3 and 4 show the corresponding ROI

curves for this experiment for Dataset 1 and 2 respectively..

Overall, the study findings suggest that tailoring the IT-CAD system based on the estimated size of the suspected

mass would produce better diagnostic performance. It is important that the ROI is chosen so that it fully includes the

suspected lesion but it is not proportionally overwhelmed by surrounding breast parenchyma.

Fig. 3. Performance of IT-CAD for masses vs. normals for three different ROI sizes and for the multisize fusion scheme

based on LDA
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Fig. 4. Performance of IT-CAD for masses vs. false positives for three different ROI sizes and for the multisize fusion

scheme based on LDA

Use of the multi-size fusion LDA model provided a small improvement over the custom size approach in both

datasets. However, this improvement reached statistical significance only for dataset 1. The results are shown in table 2

and the ROC curves are shown in Figures 3 and 4 for each dataset respectively.

Table 2: ROC performance of the IT-CAD system using linear discriminant analysis on all ROI sizes combined

Az (Masses vs. Normals) Az (Masses vs. FPS)

0.881±0.009 0.819±0.024
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4. CONCLUSION

While choosing a single ROI size for our featureless CAD system may provide reasonable overall performance, this

approach is suboptimal with masses that are too small or too large due to incomplete inclusion of the candidate mass or

inclusion of excessive background. Our results show that there was a statistically significant decrease in our CAD

performance when using the large-size ROIs.

As a first step, this study demonstrates that improvements can be achieved with a multi-size fusion approach, as

there was a small yet consistent improvement observed with multi-size linear fusion. However, implementing a custom

ROI size knowledge database maybe the best strategy to achieve robust detection performance for all mass sizes.

Experiments with advanced artificial intelligence fusion techniques are currently in progress.
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ABSTRACT 

 
We are reporting the optimized acquisition scheme of multi-projection breast Correlation Imaging (CI) 
technique, which was pioneered in our lab at Duke University. CI is similar to tomosynthesis in its image 
acquisition scheme. However, instead of analyzing the reconstructed images, the projection images are directly 
analyzed for pathology. Earlier, we presented an optimized data acquisition scheme for CI using mathematical 
observer model. In this article, we are presenting a Computer Aided Detection (CADe)-based optimization 
methodology. Towards that end, images from 106 subjects recruited for an ongoing clinical trial for 
tomosynthesis were employed. For each patient, 25 angular projections of each breast were acquired. Projection 
images were supplemented with a simulated 3 mm 3D lesion. Each projection was first processed by a 
traditional CADe algorithm at high sensitivity, followed by a reduction of false positives by combining 
geometrical correlation information available from the multiple images. Performance of the CI system was 
determined in terms of free-response receiver operating characteristics (FROC) curves and the area under ROC 
curves. For optimization, the components of acquisition such as the number of projections, and their angular 
span were systematically changed to investigate which one of the many possible combinations maximized the 
sensitivity and specificity. Results indicated that the performance of the CI system may be maximized with 7-11 
projections spanning an angular arc of 44.8o, confirming our earlier findings using observer models. These 
results indicate that an optimized CI system may potentially be an important diagnostic tool for improved breast 
cancer detection. 
 
KEYWORDS:  Multi-projection Imaging, Correlation Imaging, Breast Tomosynthesis, FROC, CADe. 
 

INTRODUCTION 
 

Medical imaging is fast advancing towards multi-projection imaging. In this technique, multiple images of the 
same patient are acquired from slightly different angles. The correlative information between different angular 
projections is then processed to extract knowledge about the presence as well as the morphology of a potential 
pathology in the patient. Multi-projection imaging technique thus builds on the advantages of standard 
projection techniques and combines it with the proven benefits of fusing information from multiple images, and 
has been proven to potentially improve the accuracy of cancer detection.1, 2 In digital radiographic imaging, this 
imaging scheme can take the form of Tomosynthesis,3 Correlation Imaging,2 or Stereoscopic Imaging.4  

While multi-projection imaging technique has notable potentials, in developing such a technique, an important 
consideration is its data acquisition scheme. Multiple aspects of data acquisition can influence the performance 
of this technique. The diagnostic outcome is a function of the number of images acquired, the total angular span 
of these acquisitions and the clinical dose at which these images are acquired. An optimum image acquisition 
scheme of an imaging system is a specific combination of those various components of acquisition that 
maximizes the available diagnostic information. This critical aspect of acquisition was studied in this work. 
 
We have previously presented a mathematical observer model-based methodology to optimize the geometry of 
data acquisition scheme for Correlation Imaging.5 The purpose of this study is to optimize the geometry using a 
CADe-based technique and to substantiate the results with those obtained from the mathematical observer 
model. As a key step towards that goal, a new CADe system for CI was developed. This CADe technique was 
based on a CADe processor reported earlier.6 To optimize the geometry of acquisitions, the acquisition 
parameters were systematically changed and the CAD-based performance measured for different settings of 
those parameters. An optimized acquisition scheme was defined as the one that generated the best CADe 
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performance. The optimization framework presented here is generic in nature and may be used to optimize any 
multi-acquisition scheme, including tomosynthesis.   
 

MATERIALS AND METHODS 
 

A. Image Database 
 

The study employed a database of image sets from 106 subjects recruited for our ongoing tomosynthesis clinical 
trial. Each image set consisted of 25 images of a subject acquired from different but fixed angular positions 
equally spaced over a ~50o arc by a prototype clinical multi-projection system, Siemens’ Mammomat Novation 
TOMO (Fig. 1). The images were acquired at kVps ranging between 28 and 30, while the total dose delivered to 
the patient was equivalent to that delivered in a standard two-view screening procedure. All cases were judged 
to be normal (without any lesions).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A 3 mm 3D lesion was simulated [5] and its projection embedded into 53 out of the available 106 cases in the 
database, creating two image datasets, one with lesion-absent and the other with lesion-present. The contrast of 
the lesion was modified based on the acquisition kVp, target/filter combination, breast thickness, anode type, 
and scatter fraction. A previously reported routine was used for this purpose.7 
 

B. CADe processor 
 
A computer-aided detection (CADe) processor was developed to investigate the performance of CI in terms of 
detectability of the embedded simulated mass.6 Specifically, the projection images were first filtered using an 
adaptive Gaussian gradient filter, which results in a blurry estimate of the anatomical background and highlights 
suspicious abnormalities in the images. Following filtration, the images were segmented using a 3D 
segmentation technique to enhance the suspicious regions. The segmentation was optimized to highlight 
structures with sizes similar to the expected 3 mm embedded lesions. These highlighted regions were then 
grown using a grayscale region growing technique and finally thresholded to remove smaller unwanted 
structures. Next, the segmented images were processed with a false positive reduction step that reduced the 
segmented structures in the images based on their morphological features. Specifically, nine morphological 
features were used and combined using a genetic algorithm-based decision fusion scheme that determined 
optimum feature thresholds that were used to determine if a structure was a potential candidate for a lesion. 
 

Digital image detector/receptor 

SID = 
65.3 cm 

Translating x-
ray source 

x-ray 
beam 

Compressed 
breast 

Digital image detector/receptor 

Fig. 1: Schematic of acquisition for multi-projection breast 
Correlation Imaging (CI). Front view (left); side view (right) 
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The segmented images were then processed by a shift and add reconstruction technique to generate a CADe-
enhanced volume within which a potential lesion was segmented. This stack of slices were then collapsed into a 
single 2D image that brings into focus the most suspected regions, while the regions with a less likelihood for 
the presence of a lesion were blurred out. A thresholding mechanism was applied to pick the region with the 
suspected pathology.  
 

C. Optimization of Data Acquisition 
 

To optimize the acquisition scheme, the components of acquisition such as the number of projections, and their 
angular span were systematically changed to investigate which one of the many possible combinations yield the 
highest diagnostic performance.  
 
The diagnostic performance was measured in terms of two performance indices. First, the ratio of True 
Positives/(True Positives + False Positives), termed Positive Predictive Index (PPI), was used as a measure of 
the true positive locations as a fraction of the total number of identified locations per image set. These values 
were obtained for different combinations of the number of projection and angular range and then averaged 
across all the cases for each combination of the acquisition setting.    
 
The second performance index was the area under the ROC curve (AUC). The AUC was computed using the 
datasets with and without the embedded lesion. Each case in the two datasets was processed with the CADe 
processor to obtain 2D contour maps. Next, instead of analyzing the final collapsed 2D contour map for the 
number of false-positives per case, only the likelihood of the presence of the embedded lesion was investigated. 
Specifically, a correlation matching of the expected signal with the signal-present and signal-absent 2D contour 
map was performed. The values obtained by this signal-matching step contained information about the presence 
or absence of the lesion and thus used as the decision variables. The probability distribution functions (pdf) of 
the signal-absent and signal-present decision variables were then computed. Finally, non-parametric ROC 
curves were derived by simple thresholding on the pdfs of the decision variables, and area under the ROC 
curves computed by the trapezoidal method.  
 

RESULTS  
 

Fig. 2 shows a representative case with the embedded lesion at angular projections of –22.3o, 0o (CC 
orientation), and 23.1o. Fig. 2d shows the true positive and false positives findings of the CADe processor 
projected on the CC image.  
 
Fig. 3 shows the variation in positive predictive index (PPI) with the number of projections within12 angular 
spans in the 3.6o−44.8o range. At each angular range, the PPI values first increase and then decrease with 
increase in the number of projections, peaking at a value that is dependent on the angular span. The maximum 
PPI is obtained for 10 projections spanning an angular arc of 44.8o. 
 
Fig. 4 shows the variation of AUC with the number of projections spanning different angular arcs. At each 
angular range, the AUC values increase with the increase in the number of angular projections and then appear 
to approach an asymptote. The number of projections at which the AUC values peak depends on the angular 
span. The highest AUC is obtained at an angular span of 44.8o with 7 projections.  
 
The trend in the variation of PPI and the AUC values delineate the role of different components of acquisition 
scheme in the final diagnostic performance of a multi-projection imaging system. These trends indicate that the 
optimum number of projections for a multi-projection imaging system may be in the 7-10 range for an angular 
span of 44.8o. Most noteworthy, the observer model results (presented last year at SPIE, and reproduced here in 
Fig. 5) show a similar trend in performance where the maximum detectability of an embedded lesion was found 
to maximize with 11 angular projections for an angular span of 44.8o. 
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DISCUSSION 
  

Data acquisition parameters in multi-projection imaging modalities, such as breast tomosynthesis, are currently 
determined primarily by the clinical requirements such as avoiding patient motion and reducing patient 
discomfort.8 However, since the acquisition scheme plays a pivotal role in the final diagnostic outcome of such 
a system, it is important to optimize the acquisition parameters to maximize the clinical performance of the 
system.  
 
In this study, the diagnostic performance of the multi-projection imaging system was measured by two different 
processors that function like surrogate human observers.  These were mathematical observer model-based and 
CADe-based processors. The two processors show how to best integrate each of the components in the 
acquisition scheme to maximize the performance of a multi-projection imaging system in a task that closely 
emulates clinical practice. While the observer model results have been reported earlier,5  a new CADe was 
developed in this project to confirm the observer model results and more importantly, to study the performance 
of the imaging system in a setup that can potentially be implemented clincially.   
 
The performance of the CADe processor was measured in terms of positive predictive index (PPI), which is 
fraction of the true positives findings to the total number of suspicious locations indicated by the CADe 
processor in an image set, and the area under ROC curve (AUC).  
 
Computation of AUC was made possible because of the signal-known exactly (SKE) paradigm of our study in 
which a known lesion (signal) was embedded at a known location of the image. This enabled determination of 
the ROC curve indicative of the detectability of the embedded lesion. This technique of determining AUC to 
evaluate CAD does not account for the errors introduced due to search mechanism inherent to clinical 
diagnostic procedure, and is also not a measure of the number of false positives per image - an important 
consideration in benchmarking CAD performance. Nevertheless, AUC provides a robust index of metric for 
evaluating how effective a CAD processor is in exploiting the geometrical correlation information between 
multiple projections of CI for detecting a potential lesion. 
 
At each of the 12 angular ranges considered, as the number of projections is increased, the PPI values first 
increase but then decrease. The increase in PPI may be attributed to the increase in true positive findings due to 
an increase in correlation information available from multiple projections. With further increase in projections, 
however, more suspicious regions come into play, thus increasing the FPs, and hence decreasing the PPI value. 
AUC values, on the other hand, appear to reach an asymptote beyond a certain number of projections. This is 
because any further increase in the number of projections offers no additional gain in the geometrical 
information in terms of the relative difference between the lesion and surrounding anatomical structures, thus 
saturating the AUC values.  
 
Both the CADe and observer model highlighted the relationship between different components of the 
acquisition scheme and the diagnostic performance of a multi-projection imaging system and were successfully 
used to optimize the acquisition scheme to maximize the available diagnostic information in CI. 
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Fig. 2 : (a), (b), (c) show projection images of a left breast acquired by the multi-projection system at –22.3 o , 0 o  (CC 
orientation), and 23.1 o , respectively. The arrows show the locations of  the embedded 3D lesion at  these projections. (d) 
shows the CC projection image with suspect ed locations of lesion marked by the CADe processor in solid dots. The 
location of the true lesion is encompassed in the elliptical ring. The locations where the dots intersect the ring are noted as  
true-positive findings. (Note: the contrast of the lesi ons was enhanced manifold for display purposes only.) 

( a )  ( b )

( d )( c )  
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Fig. 3: Positive Predictive index [TP/(TP + FP)] as a function of the number of projections spanning different angular ranges 
in a multi-projection Correlation Imaging setup. TP~True Positive findings; FP~ False Positive findings per patient case. 

 

 

 

 
Fig. 4: Area under ROC curves as a function of the number of projections spanning different angular ranges in a multi-
projection Correlation Imaging setup. AUCs indicate the detectability of a simulated mass embedded into each projection. 
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Fig. 5: Variation of AUC for different number of angular projections spanning a total angular arc in the 3.6-44.8o range 
using a mathematical observer model.1 These results confirm the optimization results obtained from the CADe processor.  

 
 

CONCLUSIONS 
 

A new CADe processor was developed for multi-projection Correlation Imaging (CI) that takes advantage of the 
geometrical correlation information to improve specificity of the CI system. The performance of the CADe 
system was computed at different data acquisition settings towards optimizing the geometry of image 
acquisition. Both the CADe and observer model results (reported earlier) show a general trend in the 
performance of a multi-projection imaging system as function of the different acquisition components, and 
confirm that the maximum performance may be obtained with 7−11 projections for an angular span of 44.8o. 
The optimization framework presented here is generic in nature and can be used to optimize any multi-
acquisition scheme, including tomosynthesis. 
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ABSTRACT 
 

The purpose of this project is to study Computer Aided Detection (CADe) of breast masses for digital 
tomosynthesis. It is believed that tomosynthesis will show improvement over conventional mammography in 
detection and characterization of breast masses by removing overlapping dense fibroglandular tissue. This study 
used the 60 human subject cases collected as part of on-going clinical trials at Duke University. Raw projections 
images were used to identify suspicious regions in the algorithm’s high-sensitivity, low-specificity stage using a 
Difference of Gaussian (DoG) filter. The filtered images were thresholded to yield initial CADe hits that were then 
shifted and added to yield a 3D distribution of suspicious regions. These were further summed in the depth direction 
to yield a flattened probability map of suspicious hits for ease of scoring. To reduce false positives, we developed an 
algorithm based on information theory where similarity metrics were calculated using knowledge databases 
consisting of tomosynthesis regions of interest (ROIs) obtained from projection images. We evaluated 5 similarity 
metrics to test the false positive reduction performance of our algorithm, specifically joint entropy, mutual 
information, Jensen difference divergence, symmetric Kullback-Liebler divergence, and conditional entropy. The 
best performance was achieved using the joint entropy similarity metric, resulting in ROC Az of 0.87 ± 0.01. As a 
whole, the CADe system can detect breast masses in this data set with 79% sensitivity and 6.8 false positives per 
scan. In comparison, the original radiologists performed with only 65% sensitivity when using mammography alone, 
and 91% sensitivity when using tomosynthesis alone. 
 
 

1. INTRODUCTION 
 
Breast cancer is the second-most deadly type of cancer for women in the United States. The American Cancer 
Society estimates that 240,510 women will be diagnosed with breast cancer in 2007 alone and will kill an estimated 
40,910 women. [1]. Survival rates are significantly higher when the cancer is detected at an early stage [2-4]. The 5-
year survival rate (YSR) for patients with localized breast cancer is 97%. Patients with distant metastases see their 5 
YSR drop to 23%. Therefore, detecting breast cancer at an early stage is critical to patient care. At present, the most 
common, and effective early-detection tool currently available to clinicians is screening mammography. However, 
mammography is well known in its inability to deal with dense overlying fibroglandular tissue. CADe was touted as 
a "second reader" to improve sensitivity by helping radiologists detect disease which might otherwise have been 
missed [4-6].  
 
In a screening setting, radiologists typically look at 4 views per patient for mammography. However, if 
tomosynthesis were to replace mammography as a screening tool, then a radiologist would potentially have to look 
at 50 to 80 reconstructed slices per exam. This increase in the number of images will likely affect workflow 
dramatically. The role of CADe in such a setting becomes even more important as not just a second reader, but also 
to possibly identify initial suspicious breast volumes for the radiologist to focus their attention. As current 
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investigators in CT colonography have suggested, CADe can potentially ease radiologist workflow when working 
with large 3D data sets [7].  
 

2. METHODS AND MATERIALS 
 
2.1 Database 
A prototype breast tomosynthesis system by Siemens Medical Solutions was developed. This system acquires 25 
projection images over a 50-degree angular range in approximately 13 seconds. An amorphous selenium direct 
digital detector with a large area of 24x30 cm has been used on this system to give resultant projection images of 
high resolution (85 micron pixel size), which are acquired at the rate of 2 images/second. Of the over 200 human 
subjects that have been recruited at the Duke University Medical Center, we used 60 subjects for this study. Bilateral 
MLO views were acquired in screening cases, while bilateral MLO and CC views were acquired for diagnostic and 
biopsy cases. A single reader, Dr. Jay Baker, head of breast imaging in the department of radiology, interpreted 
these cases in separate and blinded readings. The gold standard was established from information available from all 
modalities for a patient.  
 
Armato et al have demonstrated that the choice of a reconstruction algorithm can affect the performance of CT-
CADe [8]. As such we worked with projection images rather than reconstructed slice images in order to avoid 
dependency on any particular reconstruction algorithm. Also, to avoid loss of inherent information present in 
projection images while reconstructing them, it was essential to work with projection images. Lastly, we also wished 
to draw upon our existing mammography-based CADe techniques, and by working with projection images - which 
are similar to low dose mammogram images - we were be able to achieve that objective. Other groups have also 
implemented reconstruction independent CAD [9-10]. 
 
 
2.2 Experimental Design 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: The algorithm adopted in this study for our CADe system  
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The CADe algorithm implemented in this study can be divided into two major stages - the high-sensitivity, low-
specificity stage and the false positive reduction stage. Th e high-sensitivity, low-specificity stage can be further 
divided into two stages - the initial candidate generation and region of interest (ROI) extraction stages. Initial 
candidate generation has been implemented in this study vi a filtering of the projection images using a Difference of 
Gaussians (DoG) filter. This filtered image undergoes multi -level thresholding to yi eld initial CADe suspicious 
locations in the 2-D projection images. ROIs in this 2-D space are then shifted and ad ded together to yield 3-D 
CADe suspicious volumes of our algorithm. At this stage of the algorithm, we have 23 reconstructed slices of the 
CADe suspicious volumes for every breast scan. These stac ks of reconstructed CADe volumes are then summed in 
the depth direction to yield a flattened probability map of suspicious hits for ease of scoring. Also, by so doing we 
reduce these CADe volumes to mammogram-like projections and because of this we can map these ROIs to the 
central projection images and extract 512x 512 pixel ROIs . ROIs thus obtained are su bjected to a false positive 
reduction stage consisting of information theoretic sim ilarity metrics. Figure 1 depicts this CADe overview 
diagrammatically.  
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
             
      (a)           (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                  
 
 
 
 
 
            (c) 

Figure 2 (a) Original middle projection 
image of subject 33, LCC view (b) DoG 
filtered image of image in ‘a’ (c) CAD 
2D suspicious location in red overlaid on 
the DoG filtered image of part ‘b’  
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2.3 High-sensitivity, low-specificity stage 
We have included in this paper, as an example subject 33's LCC scan's middle projection to visually demonstrate the 
high-sensitivity, low-specificity stage of the algorithm. Figure 2(a) shows the middle projection of the scan for 
subject 33. We DoG filter this projection image to yield an image shown in figure 2(b). This image is then subjected 
to multi-level thresholding to yield 2-D CADe suspicious locations. Figure 2(c) shows the shift-and-added 2-D CAD 
suspicious locations in red overlaid on the filtered image.  
 
 
2.4 False Positive Reduction 
To reduce the number of false positives, we used information theoretic principles to assess image similarity. 
 
Given a query tomosynthesis ROI Qi , a decision index D(Qi) was calculated as the difference of two terms. 
Assuming that the knowledge database contains k mass cases and l normal cases. The first term of the decision index 
D(Qi) measures the average MI between the query ROI and its k best mass matches Mj . Similarly, the second term 
measures the average MI between the query ROI and its l best normal Nj matches,  
 

D(Qi) =
1
k

MI(Qi,M j ) −
j=1

k

∑ 1
l

MI(Qi,N j )
j=1

l

∑  

 
Theoretically, a query ROI depicting a mass should have a higher D(Qi). For this study 60 cases were used. This 
algorithm’s initial high sensitivity, low specificity stage yielded ROIs that were extracted from the middle 
projection. Hence, false positive reduction was done using only ROIs obtained from the middle projection image of 
each scan. Results were reported as Receiver Operating Characteristic (ROC) Area Under Curve (AUC) by applying 
a leave-one-out cross validation scheme on all available ROIs. 
 
2.4 Similarity Metrics 
For this experiment, we measured five similarity metrics: (1) joint entropy, (2) average conditional entropy, (3) 
mutual information, (4) maximum Kullback-Leibler divergence and, (5) Jensen divergence. These metrics were 
measured as follows: 
 
1. Joint entropy: Joint H = − pXY (x, y)log pXY (x, y)( )

y
∑

x
∑  

 

2. Average conditional entropy: conditional _ H =
H(x | y) + H(y | x)

2
 

 

3. Mutual Information: MI(X,Y) = PXY (X,Y )log2
PXY (x,y)

PX (x)PY (y)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

y
∑

x
∑  

 
4. Maximum Kullback-Leibler divergence: max_ divergence = max D(q || p),D(p || q)( ) 
 

where, Kullback-Leibler divergence: avg _ divergence =
D(q || p) + D(p || q)

2
  

 

and D(q || p) = q(x)log q(x)
p(x)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

x
∑  
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5. Jensen divergence: JD(p,q) = q(x)log 2q(x)
p(x) + q(x)

+ p(x)log 2p(x)
p(x) + q(x)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

x
∑  

For further details about these measures and their specific application in our system, please refer to the Medical 
Physics paper by co-author Georgia Tourassi [11].  
 
 

3. RESULTS 
 
Results from the first stage of the algorithm, the high sensitivity low specificity stage, are reported in the form of a 
Free-response Receiver Operating Characteristic (FROC) curve in figure 4 below.  
 
3.1 Performance of Measures Similarity Metrics  
  
Table 1 below lists the individual performance of the 5 different similarity metrics used in this study. 
 

Similarity Metric ROC Az 

joint entropy 0.87 ± 0.01 
mutual information 0.83 ± 0.01 
conditional entropy 0.83 ± 0.01 

maximum symmetric Kullback-Leibler divergence 0.77 ± 0.02 
Jensen difference divergence 0.72 ± 0.04 

Table 1: Performance of various similarity metrics for false positive reduction 
 
Our best performing metric was joint entropy with an Az of 0.87 and has been individually plotted in figure 3. 
 

 
 
 

Figure 3: ROC of the 
best performing 
similarity metric 
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3.2 Overall System Performance  
In the area where we care about the most - where sensitivity is around 90% - all 5 metrics perform about the same. 
As such, we picked our best performing metric, the joint entropy and chose to work at an operating point where the 
maximum sensitivity was 87.5% with a 45% reduction in false positives from the initial stage of the algorithm. This 
gives us an overall system performance. Figure 4 shows two Free-response Receiver Operating Characteristic 
(FROC) curves. The line in blue is the FROC curve for the initial, high-sensitivity, low-specificity stage of the 
algorithm. After we apply the operating point picked for the joint entropy metric to this FROC, we get an overall 
system FROC curve plotted in red in figure 4. The maximum sensitivity of the overall system is now 79% with 6.8 
false positives / scan. 
 

 
 
3.3 Human Subject Example 
As an example, we picked subject 60 that has a lesion that was not detected with mammography. Figure 5(a) below 
shows a scanned film of the RMLO view. Also in figure 5(b) we have shown a zoomed out version of that breast 
where the lesion is actually present. 
 
In figure 6(a) we show the tomosynthesis reconstructed slice number 15 of this breast view with the cancer clearly 
visible and encircled in red for ease. Figure 6(b) is the same reconstructed slice with the CADe hits overlaid on it as 
a cross. As we can see, the lesion was correctly picked out by the CADe algorithm along with one false positive. 
 
 

4. CONCLUSIONS 
 
The role of CADe is especially important in breast tomosynthesis due to the large volume of data. If this modality is 
ever intended as a screening tool, then a CADe algorithm that presents the radiologist with initial cues could 
potentially become indispensable for reading large patient data in a reasonable amount of time.  
 
Despite a difficult dataset where the radiologist performance was only 65% using mammograms alone, our CADe 
algorithm achieved a maximum sensitivity of 79% on a per scan basis with a maximum false positive per scan rate 
of 6.8. Also, we saw encouraging performance of the information theory false positive reduction stage despite a  

Figure 4: Overall system 
performance. The blue 
line depicts the FROC 
for the pre-false positive 
reduction stage, while 
the red line shows the 
overall performance of 
the CADe system after 
the false positive 
reduction stage 
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 (a)      (b) 
Figure 5: (a) mammographic film of subject 60 (b) magnified region of interest of subject 60 with the obscured 
lesion encircled in blue 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (a)      (b) 
Figure 6: (a) Reconstructed slice number 15 of subject 60 with the lesion encircled in red (b) Reconstructed slice 
number 15 of subject 60 with the CADe hits for that slice overlaid on it as white crosses. 
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small mass database to serve as the knowledge database. Thus, we have demonstrated feasibility of developing a 
CADe algorithm using models with the extremely low-dose tomosynthesis projection slices. Future work will 
expand the data set size, explore direct optimization of the CADe techniques for tomosynthesis projection images, 
and increase the size of the knowledge database to improve performance of the false positive reduction stage of the 
algorithm. 
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ABSTRACT 
 
The purpose of this study was to investigate feasibility of computer-aided detection of masses and calcification clusters 
in breast tomosynthesis images and obtain reliable estimates of sensitivity and false positive rate on an independent test 
set. Automatic mass and calcification detection algorithms developed for film and digital mammography images were 
applied without any adaptation or retraining to tomosynthesis projection images. Test set contained 36 patients 
including 16 patients with 20 known malignant lesions, 4 of which were missed by the radiologists in conventional 
mammography images and found only in retrospect in tomosynthesis. Median filter was applied to tomosynthesis 
projection images. Detection algorithm yielded 80% sensitivity and 5.3 false positives per breast for calcification and 
mass detection algorithms combined. Out of 4 masses missed by radiologists in conventional mammography images, 2 
were found by the mass detection algorithm in tomosynthesis images. 
 
Keywords: computer-aided diagnosis, mammography, tomosynthesis. 
 
 

1. INTRODUCTION 
 
Breast tomosynthesis is an investigational 3D imaging technique with the potential to improve sensitivity and 
specificity of breast cancer diagnosis. The technique can produce high resolution reconstructed slice images with time 
and dose comparable to conventional mammography. However, the large number of images produced can dramatically 
impact radiologist workflow and lead to missed lesions due to fatigue. Therefore, computer-aided detection (CAD) 
algorithms may play an integral role in the use of breast tomosynthesis, even more so than they already do in 
conventional mammography [1]-[7].  

1.1. Literature review 
In the past 3 years several research groups published very promising results on breast tomosynthesis CAD, including 
detection of masses and calcification clusters in reconstructed 3D images as well as in original projections. Chan et al. 
in [8] proposed a gradient field based algorithm for breast mass detection in reconstructed 3D tomosynthesis image. The 
algorithm’s performance was evaluated on 26 patients (23 masses) by means of leave-one-out (LOO) validation method 
as 85% sensitivity with 2.2 false-positives per case. The same authors recently published the results [9] with sensitivity 
of 90% and false positives rate reduced to 1.2 per case evaluated on the same data set. 
 
Several papers suggest using original projection images for calcification and mass detection and using the 3D 
reconstructed image only in the final stage. Wheeler et al. [10] presented an algorithm for calcification detection in the 
projection images. Calcification residual images are then reconstructed into a 3D image and final assessment is made in 
3D space. Sensitivity and false positive rate are not specified in this paper.  
 
Peters et al. [11] suggested a mass detection algorithm where 3D reconstruction is also used in the final stage only. The 
sensitivity of this algorithm was 86%, but only 7 masses were available in the test set. The false positive rate was 3.5 
per case, evaluated on 4 normal cases.  
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Similar workflow is used by Reiser et al. [12]. The original projections are used for primary lesion (mass) detection and 
then “the locations of a lesion candidate are backprojected” into a 3D reconstruction image. The algorithm’s 
performance (sensitivity of 90% at 1.5 false positives per breast) was evaluated on the same data set which was used for 
development: 21 cases with masses (13 malignant) and 15 normal cases. The number of false positives was significantly 
reduced compared with the previous paper by the same authors [13] where it was 13 FPs per case with the same 
sensitivity. As the authors state in their latest paper [12], the sensitivity and false positive estimates could be positively 
biased due to the lack of data and absence of an independent test set.  
 
This statement will likely hold true for all of the algorithm descriptions and evaluations mentioned above [8]-[13]: it is 
always hard to predict generalization properties of a CAD algorithm which was developed and tested using the same 
extremely limited data set. It is also true that in medical imaging in general it is hard to collect an amount data with 
consistent acquisition protocol that is enough to obtain statistically significant estimates of sensitivity and specificity. 
This becomes apparent especially in the new emerging modalities like tomosynthesis, where acquisition protocols, 
number of projections, and reconstruction algorithms vary significantly for different research centers. Clearly, while 
there is an interest among clinicians and computer scientists in developing CAD algorithms for breast tomosynthesis, 
much more extensive evaluation on independent data sets is needed to establish CAD feasibility for this new quickly 
developing modality.  
 
The purpose of this study was to establish a reliable base-line mass and calcification detection algorithm performance 
assessment on an independent test set by investigating whether an existing CAD algorithm designed for mammography 
[1]-[7] can be applied without any re-training to breast tomosynthesis images. 
 

2. METHODS 

A prototype breast tomosynthesis system by Siemens Medical Solutions was developed to acquire 25 projection images 
over a 50 degree angular range in approximately 13 seconds. The system uses an amorphous selenium direct digital 
detector with a large area (23x30 cm), high resolution (85 micron pixel size), and 2 images/second frame rate. The 
system has been undergoing evaluation and clinical trials at Duke University Medical Center. One hundred human 
subjects were recruited at that site, consisting of 65 routine screening, 25 diagnostic mammography, and 10 cases 
undergoing biopsy. This study used the first 100 human subject cases collected as part of on-going clinical trials. 

2.1. Mammo CAD algorithm 
Our computer aided detection algorithm included three major stages: candidate generation, feature extraction and 
classification. Two separate algorithms were designed for detection of calcification clusters and masses. Both 
algorithms employed multiple features characterizing various aspects of density, texture, shape and size of potential 
(candidate) findings and healthy tissue around them. In addition to a cascade of filters aimed at reducing the number of 
candidates in the process of candidate generation and feature extraction, the final classification scheme was applied to 
classify the lesions according to their likelihood of malignancy. 
 
The features and classification scheme were originally developed for regular mammograms. The classification scheme 
was constructed using a training procedure on a separate dataset of 553 regular screen-film mammogram cases from 
various BI-RADS categories, with proven pathology (281 malignant), including 200 mass lesions and 353 clusters. 
Adaptations were made in the image preprocessing step for FFDM (digital mammography) images. 

2.2. Mass and calcification detection in tomosynthesis images 
The only adaptation of Mammo CAD algorithm for low dose tomosynthesis images involved median filtering to reduce 
noise. Then the mass and calcification detection algorithms were applied without any changes. The outline of the 
algorithm and the dataflow are schematically shown in figure 1 below.  
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Fig. 1. Outline of mass and calcification cluster detection algorithm for tomosynthesis images. 
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Fig. 2. Outline of CAD algorithm developed based on mammography images.   

a) Mass detection algorithm. b) Calcification detection algorithm.  
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2.3.  Mass detection algorithm  
The mass detection algorithm is briefly outlined in figure 2a.  Mass candidate generation and segmentation is done 
separately for three mass size groups: small, medium and large. After local feature ex traction and preliminary Bayes 
filtration, local candidates are then merged within the size groups. Mass boundary is approximated through ellipse 
fitting to the mass candidate edges.  
 
Various intensity, rough and fine textur e, and shape features, including mean radius of fitted ellipses, contrast, 
eccentricity, and granularity, are then extrac ted from concentric ellipses (see figure  3) within the mass itself and from 
background in the immediate mass neighborhood. This algorith m was extensively described in the literature [4],[6], and 
in this paper we will only provide a brief explanation of major features 
 

 

Fig. 3. Concentric ellipses containing mass and background in the immediate mass neighborhood 

 
 
Mean radius ( R m ) and eccentricity ( Exc ) are evaluated as: 
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Where inkrn  and outkrn  are 2-d elliptic kernels.  
krn  value in the transitional zone shown by white concentric e llipse in the figure 3 b is excluded from calculations (set 
to 0).  
S out and S in  are the number of pixels in the local ‘outside’ ma ss vicinity and inside ‘dense mass area’ accordingly.  
 
The radius of the external ellipse was determined empirically  for each (large, medium and small) mass size category.  
 
Strimel criterion ( Str ) is calculated as a normalized convolution value of the elliptical region: 
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Fig. 4. Mass border irregularity evaluation. 

 
Mass spiculation and border irregularity Jbw was evaluated through relationship between the average of absolute 
values of differences between two neighbor radii of polygon constructed from mass border points and the average radius 
of the polygon as follows: 
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After threshold-based preliminary false positive reduction, candidates from all three size groups were merged. Final 
ellipse fitting and additional feature extraction are followed by false positive reduction by means of rank filter based on 
Bayesian probability. 

2.4. Calcification cluster detection. 
Candidate generation aimed at finding local intensity peaks was used as a first step to detect microcalcifications. After 
the candidate merging and clustering procedure, features were computed to characterize density, shape and morphology 
of clusters as well as individual calcifications. In addition to texture and intensity features, features capturing cluster 
morphology and shape were designed [1],[3],[5],[7]. Morphology was analyzed via average number of neighbors for 
each calcification in Delaunay triangulation representation of the cluster. Cluster shape (round or elongated) was 
reflected in the eccentricity feature. To characterize the shape of individual calcifications within the clusters, the ratio of 
the area of the microcalcification to its radius was computed and the average value assigned to the whole cluster. Finally 
stepwise feature selection and quadratic discriminant analysis classification were applied for false positive reduction. 

2.5. Testing on tomosynthesis images 
No changes were made to any of the stages of the algorithm, including the classifier. The test set consisted of 
tomosynthesis images of 36 patients including 16 patients with 20 known malignant lesions 4 of which were missed by 
the radiologists in conventional mammography images and found only in retrospect in tomosynthesis. Two views (CC 
and MLO) per breast, each containing 25 projection images were considered. The original low-dose tomosynthesis 
projection images were preprocessed using only a median filter to reduce noise. 
 

ri+1 ri 

Proc. of SPIE Vol. 6514  651414-6



L• I
A.

____

 

 

Then the original Mammo CAD algorithm, without any adaptation to the new modality, was used to detect masses and 
calcifications in each projection image. Ne w images with the detection results were constructed for each projection: all 
detections were marked by smooth Gaussian ellipses with intensity maximum in the middle and gradually fading toward 
the edges. The CAD result images were then reconstructed in to a 3D volume using a shift-and-add algorithm, allowing 
the evaluation of the 3D location and structure of the suspected lesions. 

3.  RESULTS 

The sensitivity of the algorithm was evaluated on a per-breast basis: the detection was considered a true-positive if the 
lesion was found at least in one view (CC or MLO). Th e estimated sensitivity was 80%. Out of 4 masses missed by 
radiologists in conventional mammography images 2 were found by our CAD algorithm in tomosynthesis images. The 
false positive rate was 4.11 false-positives per view or 5.30  per breast. While some of the false positives detections 
represented mass-like dense areas of the breast, others (~6% ) appeared on the clusters of benign calcification. An 
example of such a false positive is given in the figure 1a. An  example of a true-positive detection is shown by an ellipse 
is the figure 1b. 
 
 
 

                             
  (a)  (b) 
 

Fig. 5. a) False positive detection: cluster of beni gn calcifications.  b) True-positive mass detection. 

 

4.  CONCLUSIONS  

This is one of the first CAD studies based on images from the Siemens breast tomosynthesis system, which differs from 
other prototype systems in many ways including its high-res olution amorphous selenium detector and fast acquisition 
mode allowing more projection views. As of summer 2006, Du ke University Medical Center remains the only site with 
this system which is acquiring images of human subjects. Th e application of CAD to projection images rather than the 
reconstructed volume allows the use of existing, highly refined mammography CAD algorithms. 
 
We demonstrated feasibility of a CAD system for breast tomosy nthesis. Without any retraining or other customization, 
an existing mammography CAD system wa s successfully applied to tomosynthesi s projection images, and reconstructed 
to yield 3D detection results. The performance of our syst em, 80% sensitivity and 5.3 false positives per breast for 
calcification and mass detection algorithms combined, compar es quite favorably with other research group’s results, 
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provided that these rates are obtained from an independent test set. Future work will expand the data set size, explore 
direct optimization of the CAD techniques for tomosynthesis projection as well as 3D reconstructed images, and 
investigate other reconstruction algorithms. 
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